PyQMC: An all-Python real-space quantum Monte Carlo module in PySCF.

We describe a new open-source Python-based package for high accuracy correlated electron calculations using quantum Monte Carlo (QMC) in real space: PyQMC. PyQMC implements modern versions of QMC algorithms in an accessible format, enabling algorithmic development and easy implementation of complex workflows. Tight integration with the PySCF environment allows for a simple comparison between QMC calculations and other many-body wave function techniques, as well as access to high accuracy trial wave functions.

[1]  L. Wagner,et al.  Quantification of electron correlation for approximate quantum calculations. , 2022, The Journal of chemical physics.

[2]  Y. Yamaji,et al.  $Ab$ $initio$ low-energy effective Hamiltonians for high-temperature superconducting cuprates Bi$_2$Sr$_2$CuO$_6$, Bi$_2$Sr$_2$CaCu$_2$O$_8$, HgBa$_2$CuO$_4$ and CaCuO$_2$ , 2022, 2206.01510.

[3]  Isaac Tamblyn,et al.  Machine Learning Diffusion Monte Carlo Energies. , 2022, Journal of chemical theory and computation.

[4]  Ji Chen,et al.  Ab initio calculation of real solids via neural network ansatz , 2022, Nature communications.

[5]  Y. Yamaji,et al.  Ab initio low-energy effective Hamiltonians for high-temperature superconducting cuprates Bi 2 Sr 2 CuO 6 , Bi 2 Sr 2 CaCu 2 O 8 and CaCuO 2 , 2022 .

[6]  Isaac Tamblyn,et al.  Machine Learning Diffusion Monte Carlo Energy Densities , 2022, ArXiv.

[7]  J. Shan,et al.  Excitons and emergent quantum phenomena in stacked 2D semiconductors , 2021, Nature.

[8]  Lisandro Dalcin,et al.  mpi4py: Status Update After 12 Years of Development , 2021, Computing in Science & Engineering.

[9]  T. A. Anderson,et al.  Nonlocal pseudopotentials and time-step errors in diffusion Monte Carlo. , 2021, The Journal of chemical physics.

[10]  N. Tubman,et al.  Simulations of state-of-the-art fermionic neural network wave functions with diffusion Monte Carlo , 2021, 2103.12570.

[11]  A. Scemama,et al.  Tailoring CIPSI Expansions for QMC Calculations of Electronic Excitations: The Case Study of Thiophene , 2021, Journal of chemical theory and computation.

[12]  J. N. Rodrigues,et al.  Excited states in variational Monte Carlo using a penalty method. , 2020, The Journal of chemical physics.

[13]  Nicholas Malaya,et al.  Vandermonde Wave Function Ansatz for Improved Variational Monte Carlo , 2020, 2020 IEEE/ACM Fourth Workshop on Deep Learning on Supercomputers (DLS).

[14]  Jerome H. Saltzer,et al.  The Origin of the "MIT License" , 2020, IEEE Ann. Hist. Comput..

[15]  E. Neuscamman,et al.  A hybrid approach to excited-state-specific variational Monte Carlo and doubly excited states. , 2020, The Journal of chemical physics.

[16]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[17]  E. Neuscamman,et al.  Improving Excited State Potential Energy Surfaces via Optimal Orbital Shapes. , 2020, The journal of physical chemistry. A.

[18]  R J Needs,et al.  Variational and diffusion quantum Monte Carlo calculations with the CASINO code. , 2020, The Journal of chemical physics.

[19]  L. Capriotti,et al.  TurboRVB: A many-body toolkit for ab initio electronic simulations by quantum Monte Carlo. , 2020, The Journal of chemical physics.

[20]  A. Scemama,et al.  Variational Principles in Quantum Monte Carlo: The Troubled Story of Variance Minimization , 2020, Journal of chemical theory and computation.

[21]  C. Filippi,et al.  Excited‐State Calculations with Quantum Monte Carlo , 2020, 2002.03622.

[22]  L. Wagner,et al.  A light weight regularization for wave function parameter gradients in quantum Monte Carlo , 2020, AIP Advances.

[23]  F. Noé,et al.  Deep-neural-network solution of the electronic Schrödinger equation , 2019, Nature Chemistry.

[24]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[25]  Yue Chang,et al.  Effective spin-orbit models using correlated first-principles wave functions , 2018, Physical Review Research.

[26]  Á. Gali Ab initio theory of the nitrogen-vacancy center in diamond , 2019, Nanophotonics.

[27]  David Pfau,et al.  Ab-Initio Solution of the Many-Electron Schrödinger Equation with Deep Neural Networks , 2019, Physical Review Research.

[28]  P. Pieri,et al.  Self-learning projective quantum Monte Carlo simulations guided by restricted Boltzmann machines. , 2019, Physical review. E.

[29]  A. Scemama,et al.  Excited States with Selected Configuration Interaction-Quantum Monte Carlo: Chemically Accurate Excitation Energies and Geometries , 2019, Journal of chemical theory and computation.

[30]  Gabriel Kotliar,et al.  Correlated materials design: prospects and challenges , 2018, Reports on progress in physics. Physical Society.

[31]  Audrius Alkauskas,et al.  First-Principles Calculations of Point Defects for Quantum Technologies , 2018, Annual Review of Materials Research.

[32]  C. Melton,et al.  A new generation of effective core potentials from correlated calculations: 3d transition metal series. , 2018, The Journal of chemical physics.

[33]  Ying Wai Li,et al.  QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  Lucas K. Wagner,et al.  From Real Materials to Model Hamiltonians With Density Matrix Downfolding , 2017, Front. Phys..

[35]  E. Neuscamman,et al.  Size Consistent Excited States via Algorithmic Transformations between Variational Principles. , 2017, Journal of chemical theory and computation.

[36]  Lubos Mitas,et al.  A new generation of effective core potentials for correlated calculations. , 2017, The Journal of chemical physics.

[37]  Kamal Choudhary,et al.  High-throughput Identification and Characterization of Two-dimensional Materials using Density functional theory , 2017, Scientific Reports.

[38]  S. Hido,et al.  CuPy : A NumPy-Compatible Library for NVIDIA GPU Calculations , 2017 .

[39]  M. Gillan,et al.  Boosting the accuracy and speed of quantum Monte Carlo: Size consistency and time step , 2016, 1605.08706.

[40]  D. Ceperley,et al.  Discovering correlated fermions using quantum Monte Carlo , 2016, Reports on progress in physics. Physical Society.

[41]  Hitesh J. Changlani,et al.  Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions. , 2015, The Journal of chemical physics.

[42]  Olle Eriksson,et al.  Two-Dimensional Materials from Data Filtering and Ab Initio Calculations , 2013 .

[43]  David M. Ceperley,et al.  The Quantum Energy Density: Improved Efficiency for Quantum Monte Carlo , 2013, 1305.4563.

[44]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[45]  L. Wagner Types of single particle symmetry breaking in transition metal oxides due to electron correlation. , 2012, The Journal of chemical physics.

[46]  W. Lester,et al.  Quantum Monte Carlo and related approaches. , 2012, Chemical reviews.

[47]  Lisandro Dalcin,et al.  Parallel distributed computing using Python , 2011 .

[48]  L. Mitas,et al.  Applications of quantum Monte Carlo methods in condensed systems , 2010, 1010.4992.

[49]  Claudia Filippi,et al.  Absorption Spectrum of the Green Fluorescent Protein Chromophore: A Difficult Case for ab Initio Methods? , 2009, Journal of chemical theory and computation.

[50]  Lubos Mitas,et al.  QWalk: A quantum Monte Carlo program for electronic structure , 2007, J. Comput. Phys..

[51]  Mario A. Storti,et al.  MPI for Python: Performance improvements and MPI-2 extensions , 2008, J. Parallel Distributed Comput..

[52]  D. Rocca,et al.  Weak binding between two aromatic rings: feeling the van der Waals attraction by quantum Monte Carlo methods. , 2007, The Journal of chemical physics.

[53]  L. Mitas,et al.  Energetics and dipole moment of transition metal monoxides by quantum Monte Carlo. , 2006, The Journal of chemical physics.

[54]  M. Casula Beyond the locality approximation in the standard diffusion Monte Carlo method , 2006, cond-mat/0610246.

[55]  R. Martin,et al.  Finite-size error in many-body simulations with long-range interactions. , 2006, Physical review letters.

[56]  Mario A. Storti,et al.  MPI for Python , 2005, J. Parallel Distributed Comput..

[57]  C. Filippi,et al.  Optimized Jastrow-Slater wave functions for ground and excited states: application to the lowest states of ethene. , 2004, The Journal of chemical physics.

[58]  M. Casula,et al.  Geminal wave functions with Jastrow correlation: A first application to atoms , 2003, cond-mat/0305169.

[59]  D. Ceperley,et al.  Twist-averaged boundary conditions in continuum quantum Monte Carlo algorithms. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  R. Needs,et al.  Quantum Monte Carlo simulations of solids , 2001 .

[61]  Caffarel,et al.  Diffusion monte carlo methods with a fixed number of walkers , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[62]  S. Sorella,et al.  Numerical study of the two-dimensional Heisenberg model using a Green function Monte Carlo technique with a fixed number of walkers , 1998 .

[63]  A.J.Williamson,et al.  Diffusion Quantum Monte Carlo Calculations of Excited States of Silicon , 1998, cond-mat/9803207.

[64]  S. Sorella GREEN FUNCTION MONTE CARLO WITH STOCHASTIC RECONFIGURATION , 1998, cond-mat/9803107.

[65]  Á. Pérez‐Jiménez,et al.  Electronic transport in molecular nanodevices from ab-initio calculations , 2005 .

[66]  K. Fiedler,et al.  Monte Carlo Methods in Ab Initio Quantum Chemistry , 1995 .

[67]  D. Ceperley,et al.  New stochastic method for systems with broken time-reversal symmetry: 2D fermions in a magnetic field. , 1993, Physical review letters.

[68]  D. Ceperley,et al.  Nonlocal pseudopotentials and diffusion Monte Carlo , 1991 .

[69]  Wilson,et al.  Optimized trial wave functions for quantum Monte Carlo calculations. , 1988, Physical review letters.

[70]  P. Knowles,et al.  A second order multiconfiguration SCF procedure with optimum convergence , 1985 .

[71]  Juergen Hinze,et al.  LiH Potential Curves and Wavefunctions for X 1Σ+, A 1Σ+, B 1Π, 3Σ+, and 3Π , 1972 .

[72]  L. Reatto,et al.  The Ground State of Liquid He(4) , 1969 .

[73]  W. L. Mcmillan Ground State of Liquid He 4 , 1965 .

[74]  I. Tobias,et al.  Potential Energy Curves for CO , 1960 .