Differential expression of CYP 1 A 1 and CYP 1 B 1 in human breast epithelial cells and breast tumor cells

Human cytochromes P450 1A1 (CYP1A1) and P450 1B1 (CYP1B1) catalyze the metabolic activation of a number of procarcinogens and the hydroxylation of 17β-estradiol (E2) at the C-2 and C-4 positions, respectively. The aromatic hydrocarbon receptor (AhR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has a marked effect on estrogen metabolism in MCF-7 breast-tumor cells by induction of these two enzymes. To investigate whether induction of CYP1A1 and CYP1B1 by AhR agonists and the associated increase in E2 metabolism are common to all breast epithelial cells and breast-tumor cells, we determined the effects of TCDD on E2 metabolism, and CYP1A1 and CYP1B1 mRNA levels in a series of non-tumor-derived breast epithelial (184A1 and MCF-10A) and breast-tumor (MCF-7, T-47D, ZR-75–1, BT-20, MDA-MB-157, MDAMB-231 and MDA-MB-436) cell lines. In 184A1 cells, which did not express detectable estrogen receptor (ER) α mRNA, CYP1A1 mRNA and activity were induced by TCDD, and enhanced E2 metabolism in TCDD-treated cells was predominantly E2 2-hydroxylation. In MCF-10A, MCF-7, T-47D, ZR-75–1 and BT-20 cells, which expressed varying levels of ERα mRNA, both CYP1A1 and CYP1B1 mRNA levels and rates of both E2 2and 4-hydroxylation were highly elevated following exposure to TCDD. In MDA-MB157, MDA-MB-231 and MDA-MB-436 cells, which did not express detectable ERα mRNA and generally displayed fibroblastic or mesenchymal rather than epithelial morphology, CYP1B1 induction was favored, and the rate of E2 4-hydroxylation exceeded that of 2-hydroxylation in TCDDtreated cells. These results show that breast epithelial cells and tumor cells vary widely with regard to AhR-mediated CYP1A1 and CYP1B1 induction, suggesting that factors in addition to the AhR regulate CYP1A1 and CYP1B1 gene expression. In these cell lines, significant CYP1A1 inducibility was restricted to cultures displaying epithelial