A Cellular-Resolution Atlas of the Larval Zebrafish Brain

Understanding brain-wide neuronal dynamics requires a detailed map of the underlying circuit architecture. We built an interactive cellular-resolution atlas of the zebrafish brain at 6 days post-fertilization (dpf) based on the reconstructions of over 2,000 individually GFP-labeled neurons. We clustered our dataset in "morphotypes," establishing a unique database of quantitatively described neuronal morphologies together with their spatial coordinates in vivo. Over 100 transgene expression patterns were imaged separately and co-registered with the single-neuron atlas. By annotating 72 non-overlapping brain regions, we generated from our dataset an inter-areal wiring diagram of the larval brain, which serves as ground truth for synapse-scale, electron microscopic reconstructions. Interrogating our atlas by "virtual tract tracing" has already revealed previously unknown wiring principles in the tectum and the cerebellum. In conclusion, we present here an evolving computational resource and visualization tool, which will be essential to map function to structure in a vertebrate brain.

[1]  Hitoshi Okamoto,et al.  Identification of the Zebrafish Ventral Habenula As a Homolog of the Mammalian Lateral Habenula , 2010, The Journal of Neuroscience.

[2]  Giorgio A. Ascoli,et al.  An open repository for single-cell reconstructions of the brain forest , 2018, Scientific Data.

[3]  O. Sporns,et al.  Connectomics-Based Analysis of Information Flow in the Drosophila Brain , 2015, Current Biology.

[4]  M. A. Basso,et al.  Circuits for Action and Cognition: A View from the Superior Colliculus. , 2017, Annual review of vision science.

[5]  M. Delignette-Muller,et al.  fitdistrplus: An R Package for Fitting Distributions , 2015 .

[6]  James E. Fitzgerald,et al.  Whole-brain activity mapping onto a zebrafish brain atlas , 2015, Nature Methods.

[7]  James D. Manton,et al.  The natverse: a versatile computational toolbox to combine and analyse neuroanatomical data , 2014, bioRxiv.

[8]  Danielle S Bassett,et al.  Specificity and robustness of long-distance connections in weighted, interareal connectomes , 2017, Proceedings of the National Academy of Sciences.

[9]  P. Latham,et al.  Cracking the Neural Code for Sensory Perception by Combining Statistics, Intervention, and Behavior , 2017, Neuron.

[10]  Herwig Baier,et al.  Targeting neural circuitry in zebrafish using GAL4 enhancer trapping , 2007, Nature Methods.

[11]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[12]  Takashi Shimizu,et al.  Anatomy of zebrafish cerebellum and screen for mutations affecting its development. , 2009, Developmental biology.

[13]  G. Ascoli,et al.  NeuroMorpho.Org: A Central Resource for Neuronal Morphologies , 2007, The Journal of Neuroscience.

[14]  Ethan K. Scott,et al.  Integrative whole-brain neuroscience in larval zebrafish , 2018, Current Opinion in Neurobiology.

[15]  Eric T. Trautman,et al.  A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster , 2017, Cell.

[16]  Herwig Baier,et al.  Neuronal Architecture of a Visual Center that Processes Optic Flow , 2019, Neuron.

[17]  Takashi Kawashima,et al.  Mapping brain activity at scale with cluster computing , 2014, Nature Methods.

[18]  Gregory D. Marquart,et al.  A 3D Searchable Database of Transgenic Zebrafish Gal4 and Cre Lines for Functional Neuroanatomy Studies , 2015, Front. Neural Circuits.

[19]  Herwig Baier,et al.  Topography of a Visuomotor Transformation , 2018, Neuron.

[20]  Charles D. Hansen,et al.  FluoRender: An application of 2D image space methods for 3D and 4D confocal microscopy data visualization in neurobiology research , 2012, 2012 IEEE Pacific Visualization Symposium.

[21]  Catherine A. McCormick,et al.  Central Lateral Line Mechanosensory Pathways in Bony Fish , 1989 .

[22]  Brian B. Avants,et al.  The optimal template effect in hippocampus studies of diseased populations , 2010, NeuroImage.

[23]  B Torres,et al.  Afferent connectivity to different functional zones of the optic tectum in goldfish , 2003, Visual Neuroscience.

[24]  Ruben Portugues,et al.  Sensorimotor Representations in Cerebellar Granule Cells in Larval Zebrafish Are Dense, Spatially Organized, and Non-temporally Patterned , 2017, Current Biology.

[25]  A. Kinkhabwala,et al.  A structural and functional ground plan for neurons in the hindbrain of zebrafish , 2011, Proceedings of the National Academy of Sciences.

[26]  Jasper Akerboom,et al.  Optimization of a GCaMP Calcium Indicator for Neural Activity Imaging , 2012, The Journal of Neuroscience.

[27]  H. Baier,et al.  Genetic dissection of the retinotectal projection. , 1996, Development.

[28]  James A. Gagnon,et al.  Whole-organism lineage tracing by combinatorial and cumulative genome editing , 2016, Science.

[29]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[30]  Shuran Chen,et al.  Stress Accelerates Defensive Responses to Looming in Mice and Involves a Locus Coeruleus-Superior Colliculus Projection , 2018, Current Biology.

[31]  Guan-Yu Chen,et al.  Three-Dimensional Reconstruction of Brain-wide Wiring Networks in Drosophila at Single-Cell Resolution , 2011, Current Biology.

[32]  Herwig Baier,et al.  Genetic targeting and anatomical registration of neuronal populations in the zebrafish brain with a new set of BAC transgenic tools , 2017, Scientific Reports.

[33]  Michael R Bruchas,et al.  Effective Connectivity Measured Using Optogenetically Evoked Hemodynamic Signals Exhibits Topography Distinct from Resting State Functional Connectivity in the Mouse , 2017, Cerebral cortex.

[34]  Torsten Rohlfing,et al.  Combining genome-scale Drosophila 3 D neuroanatomical data by bridging template brains , 2014 .

[35]  Partha P. Mitra,et al.  The Circuit Architecture of Whole Brains at the Mesoscopic Scale , 2014, Neuron.

[36]  Ignacio Arganda-Carreras,et al.  Olfactory projectome in the zebrafish forebrain revealed by genetic single-neuron labelling , 2014, Nature Communications.

[37]  Won-Ki Jeong,et al.  Whole-brain serial-section electron microscopy in larval zebrafish , 2017, Nature.

[38]  Kristin Branson,et al.  A multilevel multimodal circuit enhances action selection in Drosophila , 2015, Nature.

[39]  G. Allan Johnson,et al.  Digital Atlasing and Standardization in the Mouse Brain , 2011, PLoS Comput. Biol..

[40]  L. Luo,et al.  Comprehensive Maps of Drosophila Higher Olfactory Centers: Spatially Segregated Fruit and Pheromone Representation , 2007, Cell.

[41]  Herwig Baier,et al.  Lamina-specific axonal projections in the zebrafish tectum require the type IV collagen Dragnet , 2007, Nature Neuroscience.

[42]  R. C Cannon,et al.  An on-line archive of reconstructed hippocampal neurons , 1998, Journal of Neuroscience Methods.

[43]  Herwig Baier,et al.  Linking Neurons to Network Function and Behavior by Two-Photon Holographic Optogenetics and Volumetric Imaging , 2017, Neuron.

[44]  Herwig Baier,et al.  The Retinal Projectome Reveals Brain-Area-Specific Visual Representations Generated by Ganglion Cell Diversity , 2014, Current Biology.

[45]  Aviv Regev,et al.  Comprehensive Identification and Spatial Mapping of Habenular Neuronal Types Using Single-Cell RNA-Seq , 2018, Current Biology.

[46]  O. Sporns,et al.  The economy of brain network organization , 2012, Nature Reviews Neuroscience.

[47]  Henry Kennedy,et al.  A Predictive Network Model of Cerebral Cortical Connectivity Based on a Distance Rule , 2013, Neuron.

[48]  Gregory S.X.E. Jefferis,et al.  NBLAST: Rapid, Sensitive Comparison of Neuronal Structure and Construction of Neuron Family Databases , 2016, Neuron.

[49]  J. Meek,et al.  Functional anatomy of the tectum mesencephali of the goldfish. An explorative analysis of the functional implications of the laminar structural organization of the tectum , 1983, Brain Research Reviews.

[50]  Nicholas F. Polys,et al.  High-precision registration between zebrafish brain atlases using symmetric diffeomorphic normalization , 2016, bioRxiv.

[51]  A. Ghysen,et al.  Second-order projection from the posterior lateral line in the early zebrafish brain , 2006, Neural Development.

[52]  Stephen W. Wilson,et al.  Afferent Connectivity of the Zebrafish Habenulae , 2016, Front. Neural Circuits.

[53]  Herwig Baier,et al.  Genetic and optical targeting of neural circuits and behavior—zebrafish in the spotlight , 2009, Current Opinion in Neurobiology.

[54]  Herwig Baier,et al.  Sensorimotor Decision Making in the Zebrafish Tectum , 2015, Current Biology.

[55]  R. Yuste,et al.  The Brain Activity Map Project and the Challenge of Functional Connectomics , 2012, Neuron.

[56]  Ethan K. Scott,et al.  Cerebellar Output in Zebrafish: An Analysis of Spatial Patterns and Topography in Eurydendroid Cell Projections , 2013, Front. Neural Circuits.

[57]  C A Stuermer,et al.  Retinotopic organization of the developing retinotectal projection in the zebrafish embryo , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  Ethan K. Scott,et al.  Functional Profiles of Visual-, Auditory-, and Water Flow-Responsive Neurons in the Zebrafish Tectum , 2016, Current Biology.

[59]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[60]  Alessandro Filosa,et al.  Feeding State Modulates Behavioral Choice and Processing of Prey Stimuli in the Zebrafish Tectum , 2016, Neuron.

[61]  James A. Gagnon,et al.  Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain , 2018, Nature Biotechnology.

[62]  Chung-Chuan Lo,et al.  SPIN: A Method of Skeleton-Based Polarity Identification for Neurons , 2014, Neuroinformatics.

[63]  Jeremy D. Schmahmann,et al.  A Proposal for a Coordinated Effort for the Determination of Brainwide Neuroanatomical Connectivity in Model Organisms at a Mesoscopic Scale , 2009, PLoS Comput. Biol..

[64]  Verena D. Schmittmann,et al.  Qgraph: Network visualizations of relationships in psychometric data , 2012 .

[65]  M. Orger,et al.  Whole-Brain Activity Maps Reveal Stereotyped, Distributed Networks for Visuomotor Behavior , 2014, Neuron.

[66]  Benjamin Feldman,et al.  Increased functional protein expression using nucleotide sequence features enriched in highly expressed genes in zebrafish , 2015, Nucleic acids research.

[67]  Herwig Baier,et al.  Visuomotor Behaviors in Larval Zebrafish after GFP-Guided Laser Ablation of the Optic Tectum , 2003, The Journal of Neuroscience.

[68]  A D Springer,et al.  A quantitative study of the relative contribution of different retinal sectors to the innervation of various thalamic and pretectal nuclei in goldfish , 1985, The Journal of comparative neurology.

[69]  Haim Sompolinsky,et al.  From Whole-Brain Data to Functional Circuit Models: The Zebrafish Optomotor Response , 2016, Cell.

[70]  J. Liao,et al.  Physiology of afferent neurons in larval zebrafish provides a functional framework for lateral line somatotopy. , 2012, Journal of neurophysiology.

[71]  Florian Engert,et al.  The Tangential Nucleus Controls a Gravito-inertial Vestibulo-ocular Reflex , 2012, Current Biology.

[72]  Lav R. Varshney,et al.  Structural Properties of the Caenorhabditis elegans Neuronal Network , 2009, PLoS Comput. Biol..

[73]  Laura Petrosini,et al.  A century of cerebellar somatotopy: a debated representation , 2004, Nature Reviews Neuroscience.

[74]  Christel Genoud,et al.  Analyzing the structure and function of neuronal circuits in zebrafish , 2013, Front. Neural Circuits.

[75]  Milan Sonka,et al.  3D Slicer as an image computing platform for the Quantitative Imaging Network. , 2012, Magnetic resonance imaging.

[76]  Gilles Vanwalleghem,et al.  Luminance Changes Drive Directional Startle through a Thalamic Pathway , 2018, Neuron.

[77]  Jinhyun Kim,et al.  neuTube 1.0: A New Design for Efficient Neuron Reconstruction Software Based on the SWC Format 123 , 2015, eNeuro.

[78]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[79]  M. Orger,et al.  Zebrafish Behavior: Opportunities and Challenges. , 2017, Annual review of neuroscience.

[80]  Masahiko Hibi,et al.  Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish , 2008, Proceedings of the National Academy of Sciences.

[81]  Reinhard W. Köster,et al.  Functional regionalization of the teleost cerebellum analyzed in vivo , 2014, Proceedings of the National Academy of Sciences.

[82]  W. Denk,et al.  Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure , 2004, PLoS biology.

[83]  Chie Satou,et al.  Transgenic tools to characterize neuronal properties of discrete populations of zebrafish neurons , 2013, Development.

[84]  Herwig Baier,et al.  Precise Lamination of Retinal Axons Generates Multiple Parallel Input Pathways in the Tectum , 2013, The Journal of Neuroscience.

[85]  H. Baier,et al.  A dedicated visual pathway for prey detection in larval zebrafish , 2014, eLife.

[86]  Philipp J. Keller,et al.  Whole-brain functional imaging at cellular resolution using light-sheet microscopy , 2013, Nature Methods.

[87]  Chi-Bin Chien,et al.  High‐resolution analysis of central nervous system expression patterns in zebrafish Gal4 enhancer‐trap lines , 2015, Developmental dynamics : an official publication of the American Association of Anatomists.

[88]  Aristides B. Arrenberg,et al.  Functional Architecture of an Optic Flow-Responsive Area that Drives Horizontal Eye Movements in Zebrafish , 2014, Neuron.

[89]  Herwig Baier,et al.  A GFP-based genetic screen reveals mutations that disrupt the architecture of the zebrafish retinotectal projection , 2005, Development.