Quiescent Endothelial Cells Upregulate Fatty Acid β-Oxidation for Vasculoprotection via Redox Homeostasis.

[1]  Q. Wells,et al.  A Metabolic Basis for Endothelial-to-Mesenchymal Transition. , 2018, Molecular cell.

[2]  N. Yuldasheva,et al.  Role of glutamine and interlinked asparagine metabolism in vessel formation , 2017, The EMBO journal.

[3]  Jinhua Zhang,et al.  Pathomechanisms of Oxidative Stress in Inflammatory Bowel Disease and Potential Antioxidant Therapies , 2017, Oxidative medicine and cellular longevity.

[4]  D. Chistiakov,et al.  Effects of shear stress on endothelial cells: go with the flow , 2017, Acta physiologica.

[5]  A. Luttun,et al.  The role of fatty acid β-oxidation in lymphangiogenesis , 2016, Nature.

[6]  P. Carmeliet,et al.  Inhibition of the Glycolytic Activator PFKFB3 in Endothelium Induces Tumor Vessel Normalization, Impairs Metastasis, and Improves Chemotherapy. , 2016, Cancer cell.

[7]  Camille Stephan-Otto Attolini,et al.  Targeting metastasis-initiating cells through the fatty acid receptor CD36 , 2016, Nature.

[8]  Joerg M. Buescher,et al.  Breast Cancer-Derived Lung Metastases Show Increased Pyruvate Carboxylase-Dependent Anaplerosis. , 2016, Cell reports.

[9]  A. Schulze,et al.  The multifaceted roles of fatty acid synthesis in cancer , 2016, Nature Reviews Cancer.

[10]  A. Harris,et al.  Antiangiogenic and tumour inhibitory effects of downregulating tumour endothelial FABP4 , 2016, Oncogene.

[11]  Q. Wang,et al.  Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer , 2016, Cell Death and Disease.

[12]  D. Owczarek,et al.  Endothelial dysfunction in inflammatory bowel diseases: Pathogenesis, assessment and implications. , 2016, World journal of gastroenterology.

[13]  Christina Chan,et al.  Genetic alterations in fatty acid transport and metabolism genes are associated with metastatic progression and poor prognosis of human cancers , 2016, Scientific Reports.

[14]  P. Carmeliet,et al.  FOXO1 couples metabolic activity and growth state in the vascular endothelium , 2015, Nature.

[15]  L. Liaw,et al.  DLL4/Notch1 and BMP9 Interdependent Signaling Induces Human Endothelial Cell Quiescence via P27KIP1 and Thrombospondin-1 , 2015, Arteriosclerosis, thrombosis, and vascular biology.

[16]  A. Donato,et al.  Cellular and molecular biology of aging endothelial cells. , 2015, Journal of molecular and cellular cardiology.

[17]  D. Turnbull,et al.  Neural Stem Cells in the Adult Subventricular Zone Oxidize Fatty Acids to Produce Energy and Support Neurogenic Activity , 2015, Stem cells.

[18]  A. Rodriguez-Mateos,et al.  Central role of eNOS in the maintenance of endothelial homeostasis. , 2015, Antioxidants & redox signaling.

[19]  P. Carmeliet,et al.  Fatty acid carbon is essential for dNTP synthesis in endothelial cells , 2015, Nature.

[20]  Eytan Ruppin,et al.  Proteomics-Based Metabolic Modeling Reveals That Fatty Acid Oxidation (FAO) Controls Endothelial Cell (EC) Permeability* , 2015, Molecular & Cellular Proteomics.

[21]  P. Carmeliet,et al.  Metabolism of stromal and immune cells in health and disease , 2014, Nature.

[22]  A. Harris,et al.  Fatty Acid-binding Protein 4, a Point of Convergence for Angiogenic and Metabolic Signaling Pathways in Endothelial Cells* , 2014, The Journal of Biological Chemistry.

[23]  N. Chandel,et al.  ROS Function in Redox Signaling and Oxidative Stress , 2014, Current Biology.

[24]  Daniel G. Anderson,et al.  In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. , 2014, Nature nanotechnology.

[25]  K. Shimamoto,et al.  Fatty Acid-Binding Protein 4 (FABP4): Pathophysiological Insights and Potent Clinical Biomarker of Metabolic and Cardiovascular Diseases , 2014, Clinical Medicine Insights. Cardiology.

[26]  T. Mak,et al.  Modulation of oxidative stress as an anticancer strategy , 2013, Nature Reviews Drug Discovery.

[27]  P. Carmeliet,et al.  Role of PFKFB3-Driven Glycolysis in Vessel Sprouting , 2013, Cell.

[28]  H. Stunnenberg,et al.  Dynamic binding of RBPJ is determined by Notch signaling status. , 2013, Genes & development.

[29]  O. Féron,et al.  Endothelial cell metabolism and tumour angiogenesis: glucose and glutamine as essential fuels and lactate as the driving force , 2013, Journal of internal medicine.

[30]  A. Birukova,et al.  Oxidative stress contributes to lung injury and barrier dysfunction via microtubule destabilization. , 2012, American journal of respiratory cell and molecular biology.

[31]  K. Smolková,et al.  The Role of Mitochondrial NADPH-Dependent Isocitrate Dehydrogenase in Cancer Cells , 2012, International journal of cell biology.

[32]  Omer Kalayci,et al.  Oxidative Stress and Antioxidant Defense , 2012, The World Allergy Organization journal.

[33]  J. Campisi,et al.  Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo , 2009, Nature Protocols.

[34]  Marcus Fruttiger,et al.  The Notch Ligands Dll4 and Jagged1 Have Opposing Effects on Angiogenesis , 2009, Cell.

[35]  K. Shimada,et al.  Deletion of the Fc receptors gamma chain preserves endothelial function affected by hypercholesterolaemia in mice fed on a high-fat diet. , 2008, Cardiovascular research.

[36]  Adrian L Harris,et al.  Regulation of multiple angiogenic pathways by Dll4 and Notch in human umbilical vein endothelial cells. , 2008, Microvascular research.

[37]  S. Lukyanov,et al.  Genetically encoded fluorescent indicator for intracellular hydrogen peroxide , 2006, Nature Methods.

[38]  B. Clurman,et al.  Notch Activation Induces Endothelial Cell Cycle Arrest and Participates in Contact Inhibition: Role of p21Cip1 Repression , 2004, Molecular and Cellular Biology.

[39]  S. Usami,et al.  Molecular mechanism of endothelial growth arrest by laminar shear stress. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[40]  T. Oshima,et al.  H(2)O(2)-mediated permeability: role of MAPK and occludin. , 2000, American journal of physiology. Cell physiology.

[41]  H. Brunengraber,et al.  Correction of 13C mass isotopomer distributions for natural stable isotope abundance. , 1996, Journal of mass spectrometry : JMS.

[42]  N. Oshitani,et al.  Location of superoxide anion generation in human colonic mucosa obtained by biopsy. , 1993, Gut.

[43]  Rossella D'Oria,et al.  Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. , 2018, Vascular pharmacology.

[44]  P. Carmeliet,et al.  Endothelial Cell Metabolism. , 2018, Physiological reviews.

[45]  P. Carmeliet,et al.  Targeting fatty acid metabolism in cancer and endothelial cells. , 2016, Critical reviews in oncology/hematology.

[46]  E. Díaz-Diaz,et al.  Glycine restores glutathione and protects against oxidative stress in vascular tissue from sucrose-fed rats. , 2014, Clinical science.

[47]  C. Ulrich,et al.  Exercise, Energy Balance and Cancer , 2013 .

[48]  G. FitzGerald,et al.  Eicosanoids and the vascular endothelium. , 2006, Handbook of experimental pharmacology.

[49]  Sphingolipid Mediators in Cardiovascular Cell Biology and Pathology , 2022 .