Genetic instability in cancer: theory and experiment.

[1]  T. Steitz,et al.  Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP , 2020, Nature.

[2]  C. Vaziri,et al.  DNA Polymerase κ Is Specifically Required for Recovery from the Benzo[a]pyrene-Dihydrodiol Epoxide (BPDE)-induced S-phase Checkpoint* , 2005, Journal of Biological Chemistry.

[3]  M. Albertella,et al.  The overexpression of specialized DNA polymerases in cancer. , 2005, DNA repair.

[4]  S. D. Pena,et al.  Up-regulation of the error-prone DNA polymerase {kappa} promotes pleiotropic genetic alterations and tumorigenesis. , 2005, Cancer research.

[5]  M. Lai,et al.  Hepatitis C Virus Infection Activates the Immunologic (Type II) Isoform of Nitric Oxide Synthase and Thereby Enhances DNA Damage and Mutations of Cellular Genes , 2004, Journal of Virology.

[6]  R. Weinberg,et al.  Species- and cell type-specific requirements for cellular transformation. , 2004, Cancer cell.

[7]  Martin A Nowak,et al.  Evolutionary dynamics of tumor suppressor gene inactivation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Sweasy,et al.  Is There a Link Between DNA Polymerase Beta and Cancer? , 2004, Cell cycle.

[9]  Dominik Wodarz,et al.  The optimal rate of chromosome loss for the inactivation of tumor suppressor genes in cancer. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Ash A. Alizadeh,et al.  Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. , 2004, The New England journal of medicine.

[11]  J. Sweasy,et al.  A DNA polymerase β mutant from colon cancer cells induces mutations , 2004 .

[12]  K. Michels,et al.  Caloric restriction and incidence of breast cancer. , 2004, JAMA.

[13]  T. Kunkel,et al.  Preferential cis–syn thymine dimer bypass by DNA polymerase η occurs with biased fidelity , 2004, Nature.

[14]  M. Lai,et al.  Hepatitis C virus induces a mutator phenotype: Enhanced mutations of immunoglobulin and protooncogenes , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[15]  M. Nowak,et al.  Stochastic Tunnels in Evolutionary Dynamics , 2004, Genetics.

[16]  Steven A Frank,et al.  Somatic selection for and against cancer. , 2003, Journal of theoretical biology.

[17]  D. Wodarz,et al.  Evolutionary dynamics of mutator phenotypes in cancer: implications for chemotherapy. , 2003, Cancer research.

[18]  Anirvan M. Sengupta,et al.  Mutation-selection networks of cancer initiation: tumor suppressor genes and chromosomal instability. , 2003, Journal of theoretical biology.

[19]  R. Mittelstaedt,et al.  Effect of caloric restriction on Hprt lymphocyte mutation in aging rats. , 2003, Mutation research.

[20]  M. Nowak,et al.  Local Regulation of Homeostasis Favors Chromosomal Instability , 2003, Current Biology.

[21]  Sean J. Johnson,et al.  Processive DNA synthesis observed in a polymerase crystal suggests a mechanism for the prevention of frameshift mutations , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Martin A. Nowak,et al.  The role of chromosomal instability in tumor initiation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[23]  M. Nowak,et al.  Dynamics of Genetic Instability in Sporadic and Familial Colorectal Cancer , 2002, Cancer biology & therapy.

[24]  E Georg Luebeck,et al.  Multistage carcinogenesis and the incidence of colorectal cancer , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Kyungjae Myung,et al.  Maintenance of Genome Stability in Saccharomyces cerevisiae , 2002, Science.

[26]  M. Radman,et al.  Specialized DNA Polymerases, Cellular Survival, and the Genesis of Mutations , 2002, Science.

[27]  J. Stringer,et al.  Embryonic stem cells and somatic cells differ in mutation frequency and type , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  W. Bodmer,et al.  How many mutations in a cancer? , 2002, The American journal of pathology.

[29]  R. Goldsby,et al.  Defective DNA polymerase-δ proofreading causes cancer susceptibility in mice , 2001, Nature Medicine.

[30]  K. Kinzler,et al.  Carcinogen-specific induction of genetic instability , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  M. Nowak,et al.  Virus dynamics: Mathematical principles of immunology and virology , 2001 .

[32]  L. Loeb,et al.  The Werner syndrome gene: the molecular basis of RecQ helicase-deficiency diseases. , 2000, Trends in genetics : TIG.

[33]  Chikahide Masutani,et al.  Low fidelity DNA synthesis by human DNA polymerase-η , 2000, Nature.

[34]  K. Kinzler,et al.  Genetic instabilities in human cancers , 1998, Nature.

[35]  Y. Shiloh,et al.  ATM: from gene to function. , 1998, Human molecular genetics.

[36]  A. Jackson,et al.  The mutation rate and cancer. , 1998, Genetics.

[37]  Bert Vogelstein,et al.  Mutations of mitotic checkpoint genes in human cancers , 1998, Nature.

[38]  Hongbing Zhang,et al.  BRCA1, BRCA2, and DNA Damage Response: Collision or Collusion? , 1998, Cell.

[39]  K. Kinzler,et al.  Genetic instability in colorectal cancers , 1997, Nature.

[40]  Amanda G Paulovich,et al.  When Checkpoints Fail , 1997, Cell.

[41]  A. Levine p53, the Cellular Gatekeeper for Growth and Division , 1997, Cell.

[42]  W F Bodmer,et al.  The mutation rate and cancer. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Samuel H. Wilson,et al.  Requirement of mammalian DNA polymerase-β in base-excision repair , 1996, Nature.

[44]  T. Kunkel,et al.  DNA-replication fidelity, mismatch repair and genome instability in cancer cells. , 1996, European journal of biochemistry.

[45]  M. Chung,et al.  Increased oxidative DNA damage in Helicobacter pylori-infected human gastric mucosa. , 1996, Cancer research.

[46]  Samuel H. Wilson,et al.  Requirement of mammalian DNA polymerase-β in base-excision repair , 1996, Nature.

[47]  N. Ellis,et al.  Somatic intragenic recombination within the mutated locus BLM can correct the high sister-chromatid exchange phenotype of Bloom syndrome cells. , 1995, American journal of human genetics.

[48]  M. Kimmey,et al.  Microsatellite instability and K-ras mutations associated with pancreatic adenocarcinoma and pancreatitis. , 1995, Cancer research.

[49]  T. Kunkel,et al.  DNA-Mismatch Repair: The intricacies of eukaryotic spell-checking , 1995, Current Biology.

[50]  K. Jabboury,et al.  Cell proliferation kinetics of normal and tumour tissue in vitro: quiescent reproductive cells and the cycling reproductive fraction , 1995, Cell proliferation.

[51]  N. Copeland,et al.  The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer , 1993, Cell.

[52]  L. Loeb,et al.  Multi-stage proofreading in DNA replication , 1993, Quarterly Reviews of Biophysics.

[53]  M. Eigen,et al.  Viral quasispecies. , 1993, Scientific American.

[54]  Darryl Shibata,et al.  Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis , 1993, Nature.

[55]  A. Velázquez,et al.  Isolation and characterization of allelic losses and gains in colorectal tumors by arbitrarily primed polymerase chain reaction. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[56]  R. Schaaper,et al.  Spontaneous mutation in the Escherichia coli lacI gene. , 1991, Genetics.

[57]  L. Loeb,et al.  Mutator phenotype may be required for multistage carcinogenesis. , 1991, Cancer research.

[58]  P. L. Chen,et al.  Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells. , 1988, Science.

[59]  S. Benkovic,et al.  Kinetic mechanism whereby DNA polymerase I (Klenow) replicates DNA with high fidelity. , 1988, Biochemistry.

[60]  Stephen H. Friend,et al.  A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma , 1986, Nature.

[61]  T. Kunkel,et al.  On the fidelity of DNA synthesis. Pyrophosphate-induced misincorporation allows detection of two proofreading mechanisms. , 1986, Journal of Biological Chemistry.

[62]  M. Goodman,et al.  Comparison of nucleotide interactions in water, proteins, and vacuum: model for DNA polymerase fidelity. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Goldie Jh,et al.  Genetic instability in the development of drug resistance. , 1985 .

[64]  H. Crissman,et al.  Cell cycle distribution patterns and generation times of L929 fibroblast cells persistently infected with Coxiella burnetii , 1985, Infection and immunity.

[65]  K. Kraemer,et al.  DNA repair protects against cutaneous and internal neoplasia: evidence from xeroderma pigmentosum. , 1984, Carcinogenesis.

[66]  D. Comings Metabolic basis of inherited disease , 1983 .

[67]  A. Fersht,et al.  Contribution of 3′ → 5′ exonuclease activity of DNA polymerase III holoenzyme from Escherichia coli to specificity* , 1983 .

[68]  T. Kunkel,et al.  On the fidelity of DNA replication. Effect of the next nucleotide on proofreading. , 1981, The Journal of biological chemistry.

[69]  S H Moolgavkar,et al.  Mutation and cancer: a model for human carcinogenesis. , 1981, Journal of the National Cancer Institute.

[70]  L. Loeb,et al.  On the fidelity of DNA replication. Nucleoside monophosphate generation during polymerization. , 1981, The Journal of biological chemistry.

[71]  L. Orgel,et al.  Efficient catalysis of polycytidylic acid-directed oligoguanylate formation by Pb2+. , 1980, Journal of molecular biology.

[72]  M A Savageau,et al.  Proofreading systems of multiple stages for improved accuracy of biological discrimination. , 1980, Journal of theoretical biology.

[73]  Goldie Jh,et al.  A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. , 1979 .

[74]  D. Galas,et al.  Error induction and correction by mutant and wild type T4 DNA polymerases. Kinetic error discrimination mechanisms. , 1979, The Journal of biological chemistry.

[75]  J. Ninio,et al.  A new approach to DNA polymerase kinetics. , 1979, Journal of molecular biology.

[76]  L. Norton,et al.  Tumor size, sensitivity to therapy, and design of treatment schedules. , 1977, Cancer treatment reports.

[77]  P. Nowell The clonal evolution of tumor cell populations. , 1976, Science.

[78]  L. Loeb,et al.  Conformation of deoxynucleoside triphosphate substrates on DNA polymerase I from Escherichia coli as determined by nuclear magnetic relaxation. , 1975, The Journal of biological chemistry.

[79]  J. Ninio Kinetic amplification of enzyme discrimination. , 1975, Biochimie.

[80]  John Cairns,et al.  Mutation selection and the natural history of cancer , 1975, Nature.

[81]  J. Hopfield Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[82]  L. Loeb,et al.  Errors in DNA replication as a basis of malignant changes. , 1974, Cancer research.

[83]  A. Kornberg,et al.  Enzymatic Synthesis of Deoxyribonucleic Acid XXXVI. A PROOFREADING FUNCTION FOR THE 3' → 5' EXONUCLEASE ACTIVITY IN DEOXYRIBONUCLEIC ACID POLYMERASES , 1972 .

[84]  A. Knudson Mutation and cancer: statistical study of retinoblastoma. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[85]  R. Doll The Age Distribution of Cancer: Implications for Models of Carcinogenesis , 1971 .

[86]  P. Butterworth Mechanisms of Enzyme Action , 1970, Nature.

[87]  R. Doll,et al.  A mathematical model for the age distribution of cancer in man , 1969, International journal of cancer.

[88]  J. Cleaver Defective Repair Replication of DNA in Xeroderma Pigmentosum , 1968, Nature.

[89]  I. A. Rose Mechanisms of Enzyme Action , 1966 .

[90]  Pike Mc,et al.  A method of analysis of a certain class of experiments in carcinogenesis. , 1966 .

[91]  A. George The metabolic basis of inherited disease , 1961 .

[92]  J. C. FISHER,et al.  Multiple-Mutation Theory of Carcinogenesis , 1958, Nature.

[93]  P. Armitage,et al.  The Age Distribution of Cancer and a Multi-stage Theory of Carcinogenesis , 1954, British Journal of Cancer.

[94]  C. Nordling A New Theory on the Cancer-inducing Mechanism , 1953, British Journal of Cancer.

[95]  Nordling Co A New Theory on the Cancer-inducing Mechanism , 1953 .

[96]  J. H. Hollomon,et al.  A hypothesis for the origin of cancer foci , 1951, Cancer.

[97]  J. Sweasy,et al.  A DNA polymerase beta mutant from colon cancer cells induces mutations. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[98]  L. Loeb,et al.  Cancer cells exhibit a mutator phenotype. , 1998, Advances in cancer research.

[99]  R. Wood DNA repair in eukaryotes. , 1996, Annual review of biochemistry.

[100]  J. Minna,et al.  Antioncogenes and human cancer. , 1993, Annual review of medicine.

[101]  R. Albertini,et al.  In vivo somatic mutations in humans: measurement and analysis. , 1990, Annual review of genetics.

[102]  J. Goldie,et al.  Genetic instability in the development of drug resistance. , 1985, Seminars in oncology.

[103]  A. Fersht,et al.  Contribution of 3' leads to 5' exonuclease activity of DNA polymerase III holoenzyme from Escherichia coli to specificity. , 1983, Journal of molecular biology.

[104]  J H Goldie,et al.  A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. , 1979, Cancer treatment reports.

[105]  A. Mildvan Mechanism of enzyme action. , 1974, Annual review of biochemistry.