Contact values of the radial distribution functions of additive hard-sphere mixtures in d dimensions: A new proposal

The contact values gij(σij) of the radial distribution functions of a d-dimensional mixture of (additive) hard spheres are considered. A “universality” assumption is put forward, according to which gij(σij)=G(η,zij), where G is a common function for all the mixtures of the same dimensionality, regardless of the number of components, η is the packing fraction of the mixture, and zij=(σiσj/σij)〈σd−1〉/〈σd〉 is a dimensionless parameter, 〈σn〉 being the nth moment of the diameter distribution. For d=3, this universality assumption holds for the contact values of the Percus–Yevick approximation, the scaled particle theory, and, consequently, the Boublik–Grundke–Henderson–Lee–Levesque approximation. Known exact consistency conditions are used to express G(η,0), G(η,1), and G(η,2) in terms of the radial distribution at contact of the one-component system. Two specific proposals consistent with the above-mentioned conditions (a quadratic form and a rational form) are made for the z dependence of G(η,z). For one-dim...

[1]  N. G. Almarza,et al.  The virial coefficients of hard hypersphere binary mixtures , 2002 .

[2]  S. Amokrane,et al.  On some empirical expressions for the contact values of the pair distribution functions and fluid—fluid phase separation in hard sphere mixtures , 2001 .

[3]  H. Löwen,et al.  Freezing transition of hard hyperspheres. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  J. Solana,et al.  Contact pair correlation functions and equation of state for additive hard disk fluid mixtures , 2001 .

[5]  S. B. Yuste,et al.  Equation of state of additive hard-disk fluid mixtures: a critical analysis of two recent proposals. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  M. L. Haro,et al.  Equation of state and structure of binary mixtures of hard d-dimensional hyperspheres , 2001 .

[7]  S. B. Yuste,et al.  Virial coefficients and equations of state for mixtures of hard discs, hard spheres and hard hyperspheres , 2001, cond-mat/0101098.

[8]  J. Solana,et al.  Consistency conditions and equation of state for additive hard-sphere fluid mixtures , 2000 .

[9]  Wenchuan Wang,et al.  Monte Carlo data of dilute solutions of large spheres in binary hard sphere mixtures , 2000 .

[10]  Parisi,et al.  Toy model for the mean-field theory of hard-sphere liquids , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  S. B. Yuste,et al.  Demixing in binary mixtures of hard hyperspheres , 2000, cond-mat/0002354.

[12]  V. Garzó,et al.  Homogeneous cooling state for a granular mixture. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  H L Frisch,et al.  High dimensionality as an organizing device for classical fluids. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  D. Matyushov,et al.  The solvent-solute distribution function of binary hard sphere mixtures for dilute concentrations of the large sphere , 1999 .

[15]  J. Clarke,et al.  Equation of state of hard and Weeks–Chandler–Anderson hyperspheres in four and five dimensions , 1999 .

[16]  G. Mansoori,et al.  Hard-sphere mixture excess free energy at infinite size ratio , 1999 .

[17]  D. Wasan,et al.  Phase separation in fluid additive hard sphere mixtures , 1998 .

[18]  Kwong‐Yu Chan,et al.  Solute-solvent pair distribution functions in highly asymmetric additive hard sphere mixtures , 1998 .

[19]  S. B. Yuste,et al.  Structure of multi-component hard-sphere mixtures , 1998 .

[20]  C. Vega Structure and phase diagram of mixtures of hard spheres in the limit of infinite size ratio , 1998 .

[21]  D. Matyushov,et al.  Cavity formation energy in hard sphere fluids: An asymptotically correct expression , 1997 .

[22]  Kwong‐Yu Chan,et al.  Pair correlation functions for a hard sphere mixture in the colloidal limit , 1997 .

[23]  A. Malijevský,et al.  Integral equation and computer simulation study of the structure of additive hard-sphere mixtures , 1997 .

[24]  William R. Smith,et al.  COMPUTER SIMULATION OF THE CHEMICAL POTENTIALS OF BINARY HARD-SPHERE MIXTURES , 1996 .

[25]  E. Hamad Consistency test for mixture pair correlation function integrals , 1994 .

[26]  I. Sanchez Virial coefficients and close‐packing of hard spheres and disks , 1994 .

[27]  Michels,et al.  Equation of state of hard D-dimensional hyperspheres. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[28]  Y. Rosenfeld,et al.  Scaled field particle theory of the structure and the thermodynamics of isotropic hard particle fluids , 1988 .

[29]  Luban,et al.  Equation of state of the classical hard-disk fluid. , 1985, Physical review. A, General physics.

[30]  C. Caccamo,et al.  Solution and thermodynamic consistency of the GMSA for hard sphere mixtures , 1985 .

[31]  Douglas Henderson,et al.  A simple equation of state for hard discs , 1975 .

[32]  D. Lévesque,et al.  Perturbation theory for mixtures of simple liquids , 1973 .

[33]  D. Henderson,et al.  Distribution functions of multi-component fluid mixtures of hard spheres , 1972 .

[34]  Tomáš Boublı́k,et al.  Hard‐Sphere Equation of State , 1970 .

[35]  K. E. Starling,et al.  Equation of State for Nonattracting Rigid Spheres , 1969 .

[36]  Joel L. Lebowitz,et al.  Scaled Particle Theory of Fluid Mixtures , 1965 .

[37]  Joel L. Lebowitz,et al.  Exact Solution of Generalized Percus-Yevick Equation for a Mixture of Hard Spheres , 1964 .

[38]  J. Veverka,et al.  New equations of state for pure and binary hard-sphere fluids , 1999 .

[39]  R. Sear,et al.  The absence of a liquid phase in van der Waals fluids at high dimensionality , 1998 .