Materials Challenges in Nuclear Energy

Abstract Nuclear power currently provides about 13% of electrical power worldwide, and has emerged as a reliable baseload source of electricity. A number of materials challenges must be successfully resolved for nuclear energy to continue to make further improvements in reliability, safety and economics. The operating environment for materials in current and proposed future nuclear energy systems is summarized, along with a description of materials used for the main operating components. Materials challenges associated with power uprates and extensions of the operating lifetimes of reactors are described. The three major materials challenges for the current and next generation of water-cooled fission reactors are centered on two structural materials aging degradation issues (corrosion and stress corrosion cracking of structural materials and neutron-induced embrittlement of reactor pressure vessels), along with improved fuel system reliability and accident tolerance issues. The major corrosion and stress corrosion cracking degradation mechanisms for light-water reactors are reviewed. The materials degradation issues for the Zr alloy-clad UO 2 fuel system currently utilized in the majority of commercial nuclear power plants are discussed for normal and off-normal operating conditions. Looking to proposed future (Generation IV) fission and fusion energy systems, there are five key bulk radiation degradation effects (low temperature radiation hardening and embrittlement; radiation-induced and -modified solute segregation and phase stability; irradiation creep; void swelling; and high-temperature helium embrittlement) and a multitude of corrosion and stress corrosion cracking effects (including irradiation-assisted phenomena) that can have a major impact on the performance of structural materials.

[1]  Brian D. Wirth,et al.  Light water reactor fuel performance: Current status, challenges, and future high fidelity modeling , 2011 .

[2]  D. Hoelzer,et al.  Effect of neutron irradiation on nanoclusters in MA957 ferritic alloys , 2011 .

[3]  Jeremy T Busby,et al.  Radiation damage concerns for extended light water reactor service , 2009 .

[4]  K. Natesan,et al.  Effect of trace impurities in helium on the creep behavior of Alloy 617 for very high temperature reactor applications , 2007 .

[5]  R. Kilian,et al.  Corrosion behaviour of reactor coolant system materials in nuclear power plants , 2002 .

[6]  D. H. Locke,et al.  Review of experience with water reactor fuels 1968–1973 , 1975 .

[7]  K. Murty,et al.  LWR pellet-cladding interactions: Materials solutions to SCC , 2001 .

[8]  Gaurav Gupta,et al.  Corrosion and stress corrosion cracking in supercritical water , 2007 .

[9]  A. Kohyama,et al.  Graphite, Ceramics, and Ceramic Composites for High-Temperature Nuclear Power Systems , 2009 .

[10]  H. Karnthaler,et al.  On the origin of planar slip in f.c.c. alloys , 1989 .

[11]  Steven J. Zinkle,et al.  Dose dependence of the microstructural evolution in neutron-irradiated austenitic stainless steel , 1993 .

[12]  Gail H. Marcus,et al.  Considering the next generation of nuclear power plants , 2000 .

[13]  W. J. Mills,et al.  Fracture toughness of type 304 and 316 stainless steels and their welds , 1997 .

[14]  Corrosion and stress corrosion cracking of ferritic/martensitic steel in super critical pressurized water , 2007 .

[15]  T. Byun,et al.  Deformation in metals after low-temperature irradiation: Part II – Irradiation hardening, strain hardening, and stress ratios , 2008 .

[16]  Timothy Abram,et al.  A Technology Roadmap for Generation-IV Nuclear Energy Systems, USDOE/GIF-002-00 , 2002 .

[17]  E. E. Bloom Mechanical properties of materials in fusion reactor first-wall and blanket systems , 1979 .

[18]  S. Zinkle,et al.  Structural materials for fission & fusion energy , 2009 .

[19]  P. J. Maziasz,et al.  Formation and stability of radiation-induced phases in neutron-irradiated austenitic and ferritic steels , 1989 .

[20]  B. Cox EFFECTS OF IRRADIATION ON THE OXIDATION OF ZIRCONIUM ALLOYS IN HIGH TEMPERATURE AQUEOUS ENVIRONMENTS. A REVIEW. , 1968 .

[21]  B. Huchtemann The effect of alloy chemistry on creep behaviour in a helium environment with low oxygen partial pressure , 1989 .

[22]  L. Snead,et al.  Microencapsulated fuel technology for commercial light water and advanced reactor application , 2012 .

[23]  M. Robinson,et al.  A proposed method of calculating displacement dose rates , 1975 .

[24]  H. Hoersch,et al.  Irradiation effects on the microstructure and properties of metals , 1976 .

[25]  G. Gupta,et al.  Tensile and stress corrosion cracking behavior of ferritic–martensitic steels in supercritical water , 2009 .

[26]  G. Odette,et al.  The effects of intermediate temperature irradiation on the mechanical behavior of 300-series austenitic stainless steels , 1991 .

[27]  服部 成雄,et al.  会議報告 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors , 2005 .

[28]  L. Rehn,et al.  Radiation-induced segregation in binary and ternary alloys , 1979 .

[29]  M. Finnis,et al.  Irradiation creep models — an overview , 1988 .

[30]  Steven J. Zinkle,et al.  Austenitic stainless steels and high strength copper alloys for fusion components , 1998 .

[31]  T. Byun,et al.  Deformation in metals after low-temperature irradiation: Part I – Mapping macroscopic deformation modes on true stress–dose plane , 2008 .

[32]  Donald R. Olander,et al.  Nuclear fuels - Present and future , 2009 .

[33]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[34]  J. Siirola,et al.  The Global Energy Landscape and Materials Innovation , 2008 .

[35]  E. Kenik,et al.  Radiation-Induced Degradation of Stainless Steel Light Water Reactor Internals , 2012 .

[36]  Shigeharu Ukai,et al.  Perspective of ODS alloys application in nuclear environments , 2002 .

[37]  T. Byun,et al.  Deformation mode maps for tensile deformation of neutron-irradiated structural alloys , 2004 .

[38]  S. Zinkle,et al.  Operating temperature windows for fusion reactor structural materials , 2000 .

[39]  L. Mansur,et al.  Mechanisms of swelling suppression in cold-worked phosphorous-modified Fe-Ni-Cr alloys , 1990 .

[40]  H. Trinkaus,et al.  Helium accumulation in metals during irradiation – where do we stand? , 2003 .

[41]  J. H. DeVan,et al.  Compatibility of structural materials with fusion reactor coolant and breeder fluids , 1979 .

[42]  Omesh K. Chopra,et al.  A review of irradiation effects on LWR core internal materials - Neutron embrittlement , 2011 .

[43]  S. Zinkle,et al.  Microstructure of Neutron-irradiated Iron Before and After Tensile Deformation , 2006 .

[44]  G. Wikmark,et al.  CLADDING TO SUSTAIN CORROSION, CREEP AND GROWTH AT HIGH BURN-UPS , 2009 .

[45]  C. English,et al.  Microstructural evolution in reactor pressure vessel steels , 1993 .

[46]  S. Zinkle,et al.  Influence of irradiation parameters on damage accumulation in metals and alloys , 1994 .

[47]  Gary S. Was,et al.  Fundamentals of radiation materials science , 2007 .

[48]  Y. Kitsunai,et al.  Deformation Structure in Highly Irradiated Stainless Steels , 2008 .

[49]  C. R. Eiholzer,et al.  Irradiation creep and swelling of the US fusion heats of HT9 and 9Cr-1Mo to 208 dpa at ~ 400°C☆ , 1994 .

[50]  L. Mansur,et al.  Phase stability during irradiation : proceedings of a symposium sponsored by the Nuclear Metallurgy Committee at the fall meeting of the Metallurgical Society of AIME, Pittsburgh, Pennsylvania, October 5-9, 1980 , 1981 .

[51]  Jamie B. Coble,et al.  Light Water Reactor Sustainability (LWRS) Program - Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants , 2012 .

[52]  Z. Jiao,et al.  Effect of irradiation on stress corrosion cracking in supercritical water , 2007 .

[53]  H. Matzke,et al.  Materials research on inert matrices: a screening study , 1999 .

[54]  Z. Jiao,et al.  Irradiation-assisted stress corrosion cracking of austenitic alloys in supercritical water , 2009 .

[55]  Lyndon Edwards,et al.  Greater tolerance for nuclear materials. , 2008, Nature materials.

[56]  U. S. Doe A Technology Roadmap for Generation IV Nuclear Energy Systems , 2002 .

[57]  Gary S. Was,et al.  Irradiation-assisted stress corrosion cracking , 2011, Comprehensive Nuclear Materials.

[58]  H. Nickel,et al.  The effect of high temperature reactor primary circuit helium on the formation and propagation of surface cracks in alloy 800 H and inconel 617 , 1984 .

[59]  R. S. Nelson,et al.  The stability of precipitates in an irradiation environment , 1972 .

[60]  F. Garner,et al.  Swelling as a consequence of gamma prime (γ') and M23(C, Si)6 formation in neutron irradiated 316 stainless steel , 1978 .

[61]  D. Féron,et al.  Corrosion Issues in Light Water Reactors : Stress Corrosion Cracking (EFC 51) , 2007 .

[62]  N. Baluc,et al.  The microstructure and associated tensile properties of irradiated fcc and bcc metals , 2000 .

[63]  V. Rondinella,et al.  The high burn-up structure in nuclear fuel , 2010 .

[64]  D. Hoelzer,et al.  Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT , 2009 .

[65]  Mychailo B. Toloczko,et al.  Irradiation creep and void swelling of austenitic stainless steels at low displacement rates in light water energy systems , 1997 .

[66]  Steven J. Zinkle,et al.  Materials Challenges for Advanced Nuclear Energy Systems , 2009 .

[67]  K. Une,et al.  Rim structure formation and high burnup fuel behavior of large-grained UO2 fuels , 2000 .

[68]  A. Shirzadi,et al.  Structural Alloys for Power Plants: Operational Challenges and High-Temperature Materials , 2014 .

[69]  S. Jitsukawa,et al.  Fracture toughness and tensile behavior of ferritic–martensitic steels irradiated at low temperatures , 1998 .

[70]  Y. Kurata,et al.  Creep Properties of Base Metal and Welded Joint of Hastelloy XR Produced for High-Temperature Engineering Test Reactor in Simulated Primary-Coolant Helium , 1999 .

[71]  M. Rieth,et al.  Fissile core and Tritium-Breeding Blanket: structural materials and their requirements , 2008 .

[72]  J. Jang,et al.  Environmental Degradation of Materials in Advanced Reactors , 2009 .

[73]  Per Kofstad,et al.  High Temperature Corrosion , 1988 .

[74]  J. V. Sharp CORRELATION BETWEEN CLEARED CHANNELS AND SURFACE SLIP STEPS IN NEUTRON IRRADIATED COPPER CRYSTALS. , 1972 .

[75]  T. Byun,et al.  Microstructural analysis of deformation in neutron-irradiated fcc materials , 2006 .

[76]  G. E. Lucas,et al.  The evolution of mechanical property change in irradiated austenitic stainless steels , 1993 .

[77]  D. Mills Corrosion in the nuclear power industry , 2007 .

[78]  T. Flament,et al.  Compatibility of materials in fusion first wall and blanket structures cooled by liquid metals , 1992 .

[79]  K. Natesan,et al.  Uniaxial creep response of Alloy 800H in impure helium and in low oxygen potential environments for nuclear reactor applications , 2009 .

[80]  C. Woo Modeling irradiation growth of zirconium and its alloys , 1998 .

[81]  J. Noirot,et al.  HIGH BURNUP CHANGES IN UO₂ FUELS IRRADIATED UP TO 83 GWD/T IN M5 ® CLADDINGS , 2009 .

[82]  Louis K. Mansur,et al.  Theory of transitions in dose dependence of radiation effects in structural alloys , 1993 .

[83]  Louis K. Mansur,et al.  Perspectives on radiation effects in nickel-base alloys for applications in advanced reactors , 2009 .

[84]  Jeff Deshon,et al.  Fuel R & D to Improve Fuel Reliability , 2006 .

[85]  Debarberis Luigi,et al.  Integrity of Reactor Pressure Vessels in Nuclear Power Plants: Assessment of Irradiation Embrittlement Effects in Reactor Pressure Vessel Steels , 2009 .

[86]  Z. Jiao,et al.  Impact of localized deformation on IASCC in austenitic stainless steels , 2011 .

[87]  R. H. Cook Creep Properties of lnconel-617 in Air and Helium at 800 to 1000°C , 1984 .

[88]  R. Boothby The microstructure of fast neutron irradiated Nimonic PE16 , 1996 .

[89]  R. C. Birtcher,et al.  Bulk-nanocrystalline oxide nuclear fuels – An innovative material option for increasing fission gas retention, plasticity and radiation-tolerance , 2012 .

[90]  M. L. Hamilton,et al.  Effects of radiation on materials: 18. international symposium , 1990 .

[91]  D. Gelles,et al.  Irradiation creep mechanisms: An experimental perspective☆ , 1988 .

[92]  H. Matzke,et al.  Polygonization and high burnup structure in nuclear fuels , 1997 .

[93]  R. Konings,et al.  Comprehensive Nuclear Materials , 2012 .

[94]  P. Dubuisson,et al.  Microstructural evolution of ferritic-martensitic steels irradiated in the fast breeder reactor Phénix , 1993 .

[95]  Gary S. Was,et al.  Fundamentals of Radiation Materials Science: Metals and Alloys , 2007 .

[96]  D. Féron Nuclear corrosion science and engineering , 2012 .

[97]  Philip G. Tipping,et al.  Understanding and mitigating ageing in nuclear power plants: Materials and operational aspects of plant life management (Plim) , 2010 .

[98]  W. Wolfer Advances in void swelling and helium bubble physics , 1984 .

[99]  R. Holt Microstructure dependence of irradiation creep and growth of zirconium alloys , 1980 .

[100]  M. Simnad A brief history of power reactor fuels , 1981 .

[101]  Mychailo B. Toloczko,et al.  Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure , 2000 .

[102]  L. Mansur Theory and experimental background on dimensional changes in irradiated alloys , 1994 .

[103]  K. Shiba,et al.  Effects of low temperature neutron irradiation on deformation behavior of austenitic stainless steels , 1996 .

[104]  A. Marwick Solute segregation and precipitate stability in irradiated alloys , 1981 .

[105]  E. J. Fulton,et al.  Voids in Irradiated Stainless Steel , 1967, Nature.

[106]  Zeses E. Karoutas,et al.  CASL virtual reactor predictive simulation: Grid-to-Rod Fretting wear , 2011 .

[107]  Eal H. Lee,et al.  Theoretical basis for unified analysis of experimental data and design of swelling-resistant alloys☆ , 1991 .

[108]  D. J. Naus The management of aging in nuclear power plant concrete structures , 2009 .

[109]  Saurin Majumdar,et al.  Radial-hydride Embrittlement of High-burnup Zircaloy-4 Fuel Cladding , 2006 .

[110]  V. Kafka,et al.  The inhomogeneity of plastic deformation , 1985 .

[111]  H. Ullmaier The influence of helium on the bulk properties of fusion reactor structural materials , 1984 .

[112]  John P. Shingledecker,et al.  Oxide dispersion-strengthened steels: A comparison of some commercial and experimental alloys , 2005 .

[113]  P. Lett,et al.  High temperature corrosion of structural materials under gas‐cooled reactor helium , 2006 .

[114]  Brian D. Wirth,et al.  Recent Developments in Irradiation-Resistant Steels , 2008 .

[115]  M. Pijolat,et al.  Oxide-Layer Formation and Stability on a Nickel-Base Alloy in Impure Helium at High Temperature , 2007 .

[116]  Robert W. Cahn,et al.  Materials science and technology : a comprehensive treatment , 2000 .

[117]  T. Byun,et al.  Plastic instability in polycrystalline metals after low temperature irradiation , 2004 .

[118]  M. Sauzay,et al.  TEM observations and finite element modelling of channel deformation in pre-irradiated austenitic stainless steels: Interactions with free surfaces and grain boundaries , 2010 .

[119]  F. Garner,et al.  Swelling and void-induced embrittlement of austenitic stainless steel irradiated to 73–82 dpa at 335–365°C , 1998 .

[120]  E. V. Osch,et al.  Irradiation testing of 316L(N)-IG austenitic stainless steel for ITER , 1998 .

[121]  M. B. Lewis,et al.  Investigations of ion radiation effects at metal/liquid interfaces , 1999 .