Application of Localized Surface Plasmon Resonance of Conjugated Gold Nanoparticles in Spectral Diagnosis of SARS-CoV-2: A Numerical Study

[1]  E. Koushki,et al.  Simple Method for Optical Detection and Characterization of Surface Agents on Conjugated Gold Nanoparticles , 2023, Plasmonics.

[2]  C. Wenger,et al.  Titanium Nitride Plasmonic Nanohole Arrays for CMOS-Compatible Integrated Refractive Index Sensing: Influence of Layer Thickness on Optical Properties , 2023, Plasmonics.

[3]  Ming La,et al.  Colorimetric and Electrochemical Methods for the Detection of SARS-CoV-2 Main Protease by Peptide-Triggered Assembly of Gold Nanoparticles , 2022, Molecules.

[4]  S. Gandhi,et al.  Label-free detection of SARS-CoV-2 Spike S1 antigen triggered by electroactive gold nanoparticles on antibody coated fluorine-doped tin oxide (FTO) electrode , 2021, Analytica Chimica Acta.

[5]  Erman Karakuş,et al.  Colorimetric and electrochemical detection of SARS-CoV-2 spike antigen with a gold nanoparticle-based biosensor , 2021, Analytica Chimica Acta.

[6]  E. Koushki Effect of conjugation with organic molecules on the surface plasmon resonance of gold nanoparticles and application in optical biosensing , 2021, RSC advances.

[7]  M. Zadravec,et al.  Study of gold nanoparticles’ preparation through ultrasonic spray pyrolysis and lyophilisation for possible use as markers in LFIA tests , 2021, Nanotechnology Reviews.

[8]  E. Koushki,et al.  Electrical effects of AuNPs and PVA polymers on optical band gap and thermo-optical properties of TiO2 nanoparticles , 2020 .

[9]  Á. Delgado,et al.  AC Electrokinetics of Salt-Free Multilayered Polymer-Grafted Particles , 2020, Polymers.

[10]  Adeel Afzal,et al.  Molecular diagnostic technologies for COVID-19: Limitations and challenges , 2020, Journal of Advanced Research.

[11]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[12]  Navid Rabiee,et al.  Point-of-Use Rapid Detection of SARS-CoV-2: Nanotechnology-Enabled Solutions for the COVID-19 Pandemic , 2020, International journal of molecular sciences.

[13]  Maha Alafeef,et al.  Selective Naked-Eye Detection of SARS-CoV-2 Mediated by N Gene Targeted Antisense Oligonucleotide Capped Plasmonic Nanoparticles , 2020, ACS nano.

[14]  Xiaoyan Zeng,et al.  Rapid Detection of IgM Antibodies against the SARS-CoV-2 Virus via Colloidal Gold Nanoparticle-Based Lateral-Flow Assay , 2020, ACS omega.

[15]  R. Tjian,et al.  Overcoming the bottleneck to widespread testing: a rapid review of nucleic acid testing approaches for COVID-19 detection , 2020, RNA.

[16]  E. Koushki,et al.  The effects of glucose and glucose oxidase on the Uv-visible spectrum of gold nanoparticles: a study on optical biosensor for saliva glucose monitoring. , 2020, Photodiagnosis and photodynamic therapy.

[17]  Yanling Song,et al.  Discovery of Aptamers Targeting the Receptor-Binding Domain of the SARS-CoV-2 Spike Glycoprotein , 2020, Analytical chemistry.

[18]  Xiaoquan Lu,et al.  Noble metal nanoparticles growth-based colorimetric strategies: From monocolorimetric to multicolorimetric sensors , 2019, Coordination Chemistry Reviews.

[19]  Teri W. Odom,et al.  Plasmon nanolasing with aluminum nanoparticle arrays [Invited] , 2019, Journal of the Optical Society of America B.

[20]  Fiachra B. Bolger,et al.  Characterisation of a Platinum-based Electrochemical Biosensor for Real-time Neurochemical Analysis of Choline , 2018, Electroanalysis.

[21]  J. P. B. Silva,et al.  Substrate Temperature Effect on Microstructure, Optical, and Glucose Sensing Characteristics of Pulsed Laser Deposited Silver Nanoparticles , 2018, Plasmonics.

[22]  Mehdi Kamali,et al.  Recent biomedical applications of gold nanoparticles: A review. , 2018, Talanta.

[23]  Zoltán G. Soos,et al.  Dipole‐Field Sums, Lorentz Factors, and Dielectric Properties of Organic Molecular Films Modeled as Crystalline Arrays of Polarizable Points , 2015 .

[24]  M. Ara,et al.  Modeling electrical and optical spectral responses of homogeneous nanocomposites , 2014 .

[25]  W. Kreyling,et al.  Serum protein identification and quantification of the corona of 5, 15 and 80 nm gold nanoparticles , 2013, Nanotechnology.

[26]  Chad A Mirkin,et al.  Plasmon Length: A Universal Parameter to Describe Size Effects in Gold Nanoparticles. , 2012, The journal of physical chemistry letters.

[27]  M. Shopa,et al.  Dipole and quadrupole surface plasmon resonance contributions in formation of near-field images of a gold nanosphere , 2010 .

[28]  M. Meneghetti,et al.  Size Evaluation of Gold Nanoparticles by UV−vis Spectroscopy , 2009 .

[29]  Younan Xia,et al.  Quantitative Analysis of Dipole and Quadrupole Excitation in the Surface Plasmon Resonance of Metal Nanoparticles , 2008 .

[30]  J. Vörös,et al.  Electrochemical Biosensors - Sensor Principles and Architectures , 2008, Sensors.

[31]  Weijia Wen,et al.  Electrorheological fluids: structures and mechanisms. , 2008, Soft matter.

[32]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[33]  Xiaohua Huang,et al.  Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. , 2005, Nano letters.

[34]  P. B. Allen Dipole interactions and electrical polarity in nanosystems: the Clausius-Mossotti and related models. , 2003, The Journal of chemical physics.

[35]  A. Sihvola Mixing Rules with Complex Dielectric Coefficients , 2000 .

[36]  Stephan Link,et al.  Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles , 1999 .

[37]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[38]  Robert L. Whetten,et al.  Optical Absorption Spectra of Nanocrystal Gold Molecules , 1997 .

[39]  C Gough,et al.  Introduction to Solid State Physics (6th edn) , 1986 .

[40]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[41]  M. Wood,et al.  Antisense oligonucleotides: the next frontier for treatment of neurological disorders , 2018, Nature Reviews Neurology.

[42]  E. Koushki,et al.  Numerical simulation of optical dispersion, group velocity, and waveguide properties of gold and silver nanocolloids and hybrids , 2016, Colloid and Polymer Science.

[43]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[44]  David J. Bergman,et al.  Rigorous bounds for the complex dielectric constant of a two-component composite , 1982 .

[45]  J. Hillier,et al.  A study of the nucleation and growth processes in the synthesis of colloidal gold , 1951 .