Impact of short-channel effects on velocity overshoot in MOSFET

In this work, the impact of short-channel effects on velocity overshoot is discussed. Hydrodynamic simulations are first performed to investigate the overshoot behavior under a uniform electric field. Then a spatially varying electric field, which corresponds to the electric field profile in a MOSFET in inversion, is introduced to observe the impact of short-channel effects on velocity overshoot. Finally, SPICE simulations of a ring-oscillator are used to analyze how the combined influence of overshoot and short-channel effects affect the performance of downscaled CMOS technology.

[1]  E. Pop,et al.  Localized heating effects and scaling of sub-0.18 micron CMOS devices , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[2]  A.S. Roy,et al.  Source–Drain Partitioning in MOSFET , 2007, IEEE Transactions on Electron Devices.

[3]  N. Arora,et al.  MOSFET substrate current model for circuit simulation , 1991 .

[4]  G. Ghibaudo,et al.  High field transport characterization in nano MOSFETs using 10GHz capacitance measurements , 2013, 2013 IEEE International Electron Devices Meeting.

[5]  K. Seeger,et al.  Semiconductor Physics: An Introduction , 1973 .

[6]  F. M. Bufler,et al.  HOLE TRANSPORT IN STRAINED SI1-XGEX ALLOYS ON SI1-YGEY SUBSTRATES , 1998 .

[7]  Lan Wei,et al.  Virtual-Source-Based Self-Consistent Current and Charge FET Models: From Ballistic to Drift-Diffusion Velocity-Saturation Operation , 2012, IEEE Transactions on Electron Devices.

[8]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[9]  M. Lundstrom Fundamentals of carrier transport , 1990 .

[10]  G. Ghibaudo,et al.  New experimental insight into ballisticity of transport in strained bulk MOSFETs , 2006, 2009 Symposium on VLSI Technology.

[11]  Jeffrey Bokor,et al.  Velocity overshoot of electrons and holes in Si inversion layers , 1997 .

[12]  K. Ng,et al.  The Physics of Semiconductor Devices , 2019, Springer Proceedings in Physics.

[13]  Frederic Boeuf,et al.  Accurate Boundary Condition for Short-Channel Effect Compact Modeling in MOS Devices , 2015, IEEE Transactions on Electron Devices.

[14]  N. Goldsman,et al.  Efficient and accurate use of the energy transport method in device simulation , 1988 .

[15]  R. W. Coen,et al.  Velocity of surface carriers in inversion layers on silicon , 1980 .

[16]  Juan Bautista Roldán,et al.  Modeling effects of electron-velocity overshoot in a MOSFET , 1997 .

[17]  P. J. Price On the flow equation in device simulation , 1988 .

[18]  Mansun Chan,et al.  BSIM5 MOSFET Model , 2004, Proceedings. 7th International Conference on Solid-State and Integrated Circuits Technology, 2004..

[19]  D. Antoniadis,et al.  On experimental determination of carrier velocity in deeply scaled NMOS: how close to the thermal limit? , 2001, IEEE Electron Device Letters.

[20]  Jerry G. Fossum,et al.  Simplified energy-balance model for pragmatic multi-dimensional device simulation , 1997 .

[21]  Frederic Boeuf,et al.  MASTAR VA: A predictive and flexible compact model for digital performances evaluation of CMOS technology with conventional CAD tools , 2014 .

[22]  Hei Wong,et al.  Approximation of the length of velocity saturation region in MOSFET's , 1997 .

[23]  Bin Liu,et al.  Physical compact modeling and analysis of velocity overshoot in extremely scaled CMOS devices and circuits , 2001 .

[24]  K. Thornber,et al.  Current equations for velocity overshoot , 1982, IEEE Electron Device Letters.

[25]  Frederic Boeuf,et al.  Refined Conformal Mapping Model for MOSFET Parasitic Capacitances Based on Elliptic Integrals , 2015, IEEE Transactions on Electron Devices.