The Iwasawa Algebra $\Omega_G$ and Its Dual Artin Coalgebra

For any compact $p$-adic Lie group $G$, the Iwasawa algebra $\Omega_G$ over finite field $\mathbb{F}_p$ is a complete noetherian semilocal algebra. It is shown that $\Omega_G$ is the dual algebra of an artinian coalgebra $C$. We induce a duality between the derived category $\mathcal{D}^b_{fg}(_{\Omega_G}\mathcal{M})$ of bounded complexes of left $\Omega_G$-modules with finitely generated cohomology modules and the derived category $\mathcal{D}^b_{qf}(^C\mathcal{M})$ of bounded complexes of left $C$-comodules with quasi-finite cohomology comodules.

[1]  Parham Hamidi Ring theoretic properties of Iwasawa algebras , 2017 .

[2]  F. Wei Homological properties of noncommutative Iwasawa algebras , 2011 .

[3]  James J. Zhang,et al.  Nonexistence of reflexive ideals in Iwasawa algebras of Chevalley type , 2007, 0710.0635.

[4]  James J. Zhang,et al.  Reflexive ideals in Iwasawa algebras , 2007, 0710.0624.

[5]  K. Brown,et al.  Ring-Theoretic Properties of Iwasawa Algebras: A Survey 1 , 2005, math/0511345.

[6]  J. Coates,et al.  The GL2 Main Conjecture for Elliptic Curves without Complex Multiplication , 2004, math/0404297.

[7]  O. Venjakob Characteristic elements in noncommutative Iwasawa theory , 2003, math/0311446.

[8]  J. Coates,et al.  MODULES OVER IWASAWA ALGEBRAS , 2001, Journal of the Institute of Mathematics of Jussieu.

[9]  O. Venjakob On the Iwasawa Theory of p-Adic Lie Extensions , 2001, Compositio Mathematica.

[10]  H. Porst ON CORINGS AND COMODULES , 2003 .

[11]  C. Nastasescu,et al.  Graded almost noetherian rings and applications to coalgebras , 2002 .

[12]  O. Venjakob,et al.  On the structure of Selmer groups over -adic Lie extensions , 2002 .

[13]  O. Venjakob A noncommutative Weierstrass preparation theorem and applications to Iwasawa theory , 2002, math/0204358.

[14]  J. Coates Iwasawa algebras and arithmetic , 2002 .

[15]  James J. Zhang,et al.  Homological Identities for Noncommutative Rings , 2001 .

[16]  O. Venjakob On the structure theory of the Iwasawa algebra of a p-adic Lie group , 2001, math/0106269.

[17]  Askar A. Tuganbaev,et al.  Rings of quotients , 1998 .

[18]  Amnon Yekutieli Dualizing complexes over noncommutative graded algebras , 1992 .

[19]  W. Xue Rings with Morita duality , 1992 .

[20]  Donald Passman,et al.  Infinite Crossed Products , 1989 .

[21]  Robert G Heyneman,et al.  Reflexivity and coalgebras of finite type , 1974 .

[22]  Frank W. Anderson,et al.  Rings and Categories of Modules , 1974 .

[23]  M. Lazard,et al.  Groupes analytiques p-adiques , 1965 .