Extensions of a Theory of Networks for Approximation and Learning : dimensionality reduction and clustering

[1]  Arthur Albert,et al.  Regression and the Moore-Penrose Pseudoinverse , 2012 .

[2]  T. Poggio,et al.  Networks and the best approximation property , 1990, Biological Cybernetics.

[3]  Shimon Edelman,et al.  Bringing the Grandmother back into the Picture: A Memory-Based View of Object Recognition , 1990, Int. J. Pattern Recognit. Artif. Intell..

[4]  Ronen Basri,et al.  Recognition by Linear Combinations of Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Tomaso Poggio,et al.  HyperBF: a powerful approximation technique for learning , 1991 .

[6]  Barbara Moore,et al.  Theory of networks for learning , 1990, Defense, Security, and Sensing.

[7]  Tomaso A. Poggio,et al.  Extensions of a Theory of Networks for Approximation and Learning , 1990, NIPS.

[8]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[9]  David S. Broomhead,et al.  Multivariable Functional Interpolation and Adaptive Networks , 1988, Complex Syst..

[10]  M. Bertero Regularization methods for linear inverse problems , 1986 .

[11]  V. A. Morozov,et al.  Methods for Solving Incorrectly Posed Problems , 1984 .

[12]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[13]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[14]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[15]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[16]  S. G. Mikhlin,et al.  The problem of the minimum of a quadratic functional , 1965 .

[17]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .