Categorization of Image Databases for Efficient Retrieval Using Robust Mixture Decomposition

In this paper, we present a robust mixture decomposition technique that automatically finds a compact representation of the data in terms of components. We apply it to the problem of organizing databases for efficient retrieval. The time taken for retrieval is an order of magnitude smaller than that of exhaustive search methods. We also compare our approach with other methods for decomposition that use traditional criteria such as Akaike, Schwarz, and minimum description length. We report results on the VisTex texture image database from the MIT Media Lab.

[1]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[2]  R. Krishnapuram,et al.  Determination of the number of components in Gaussian mixtures using agglomerative clustering , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[3]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[4]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[5]  Harpreet S. Sawhney,et al.  Compact Representations of Videos Through Dominant and Multiple Motion Estimation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  José M. N. Leitão,et al.  On Fitting Mixture Models , 1999, EMMCVPR.

[7]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[8]  Nuno Vasconcelos,et al.  A probabilistic architecture for content-based image retrieval , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[9]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[10]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[11]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[12]  H. Akaike A new look at the statistical model identification , 1974 .

[13]  Andrew B. Lippman,et al.  Embedded mixture modeling for efficient probabilistic content-based indexing and retrieval , 1998, Other Conferences.

[14]  Alex Pentland,et al.  Cooperative Robust Estimation Using Layers of Support , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Rajesh N. Davé,et al.  Robust clustering methods: a unified view , 1997, IEEE Trans. Fuzzy Syst..

[16]  Rosalind W. Picard,et al.  Finding similar patterns in large image databases , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[17]  Ramesh C. Jain,et al.  Similarity indexing with the SS-tree , 1996, Proceedings of the Twelfth International Conference on Data Engineering.

[18]  Alex Pentland,et al.  Photobook: tools for content-based manipulation of image databases , 1994, Electronic Imaging.

[19]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[20]  Ramesh C. Jain,et al.  Similarity indexing: algorithms and performance , 1996, Electronic Imaging.

[21]  Harpreet Sawhney,et al.  Efficient color histogram indexing , 1994, Proceedings of 1st International Conference on Image Processing.

[22]  Christos Faloutsos,et al.  QBIC project: querying images by content, using color, texture, and shape , 1993, Electronic Imaging.

[23]  Matthew Brand,et al.  Structure Learning in Conditional Probability Models via an Entropic Prior and Parameter Extinction , 1999, Neural Computation.

[24]  Anupam Joshi,et al.  Relational clustering based on a new robust estimator with application to Web mining , 1999, 18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397).

[25]  Anil K. Jain,et al.  Unsupervised selection and estimation of finite mixture models , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[26]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Peter Bryant MDL for Mixtures of Normal Distributions , 1996 .

[28]  Amarnath Gupta,et al.  Visual information retrieval , 1997, CACM.

[29]  Swarup Medasani,et al.  Categorization of image databases for efficient retrieval using robust mixture decomposition , 1998, Proceedings. IEEE Workshop on Content-Based Access of Image and Video Libraries (Cat. No.98EX173).

[30]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[31]  Shih-Fu Chang,et al.  VisualSEEk: a fully automated content-based image query system , 1997, MULTIMEDIA '96.

[32]  Donald B. Rubin,et al.  Max-imum Likelihood from Incomplete Data , 1972 .

[33]  A. Sen On Economic Inequality , 1974 .

[34]  Swarup Medasani,et al.  A comparison of Gaussian and Pearson mixture modeling for pattern recognition and computer vision applications , 1999, Pattern Recognit. Lett..

[35]  C.-C. Jay Kuo,et al.  Hierarchical clustering techniques for image database organization and summarization , 1998, Other Conferences.

[36]  Alex Pentland,et al.  Photobook: tools for content-based manipulation of image databases , 1994, Other Conferences.

[37]  B. S. Manjunath,et al.  NeTra: A toolbox for navigating large image databases , 1997, Multimedia Systems.

[38]  Serge J. Belongie,et al.  Region-based image querying , 1997, 1997 Proceedings IEEE Workshop on Content-Based Access of Image and Video Libraries.

[39]  Anupam Joshi,et al.  Mining web access logs using a fuzzy relational clustering algorithm based on a robust estimator , 1999, WWW 1999.

[40]  Geoffrey J. McLachlan,et al.  Mixture models : inference and applications to clustering , 1989 .

[41]  Michael J. Symons,et al.  Clustering criteria and multivariate normal mixtures , 1981 .

[42]  Hichem Frigui,et al.  A robust clustering algorithm based on competitive agglomeration and soft rejection of outliers , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.