暂无分享,去创建一个
Francisco de A. T. de Carvalho | Antonio Irpino | Rosanna Verde | A. Irpino | R. Verde | F. D. Carvalho
[1] F. Famoye. Continuous Univariate Distributions, Volume 1 , 1994 .
[2] Yves Lechevallier,et al. Dynamic Clustering of Interval-Valued Data Based on Adaptive Quadratic Distances , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.
[3] Carlos Matrán,et al. Optimal Transportation Plans and Convergence in Distribution , 1997 .
[4] Yves Lechevallier,et al. Partitional clustering algorithms for symbolic interval data based on single adaptive distances , 2009, Pattern Recognit..
[5] Edwin Diday,et al. Symbolic Data Analysis: A Mathematical Framework and Tool for Data Mining , 1999, Electron. Notes Discret. Math..
[6] Zhaohong Deng,et al. Enhanced soft subspace clustering integrating within-cluster and between-cluster information , 2010, Pattern Recognit..
[7] Alison L Gibbs,et al. On Choosing and Bounding Probability Metrics , 2002, math/0209021.
[8] G. W. Milligan,et al. A study of standardization of variables in cluster analysis , 1988 .
[9] C. Givens,et al. A class of Wasserstein metrics for probability distributions. , 1984 .
[10] Michael K. Ng,et al. An optimization algorithm for clustering using weighted dissimilarity measures , 2004, Pattern Recognit..
[11] Yunming Ye,et al. A feature group weighting method for subspace clustering of high-dimensional data , 2012, Pattern Recognit..
[12] Hans-Hermann Bock,et al. Dynamic clustering for interval data based on L2 distance , 2006, Comput. Stat..
[13] M. Cugmas,et al. On comparing partitions , 2015 .
[14] Peter J. Bickel,et al. The Earth Mover's distance is the Mallows distance: some insights from statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.
[15] N. L. Johnson,et al. Continuous Univariate Distributions. , 1995 .
[16] F. D. de Carvalho,et al. A Clustering Method for Mixed Feature-Type Symbolic Data using Adaptive Squared Euclidean Distances , 2007, 7th International Conference on Hybrid Intelligent Systems (HIS 2007).
[17] Mathieu Vrac,et al. Copula analysis of mixture models , 2012, Comput. Stat..
[18] Y. Lechevallier,et al. Dynamic clustering of histograms using Wasserstein metric , 2006 .
[19] Rui Xu,et al. Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.
[20] Hans-Hermann Bock,et al. Analysis of Symbolic Data , 2000 .
[21] Anil K. Jain. Data clustering: 50 years beyond K-means , 2010, Pattern Recognit. Lett..
[22] C. Villani. Topics in Optimal Transportation , 2003 .
[23] J. Friedman,et al. Clustering objects on subsets of attributes (with discussion) , 2004 .
[24] C. Mallows. A Note on Asymptotic Joint Normality , 1972 .
[25] Antonio Irpino,et al. Comparing Histogram Data Using a Mahalanobis–Wasserstein Distance , 2008 .
[26] Edwin Diday,et al. Symbolic Data Analysis: Conceptual Statistics and Data Mining (Wiley Series in Computational Statistics) , 2007 .
[27] Antonio Irpino,et al. Dynamic Clustering of Histogram Data: Using the Right Metric , 2007 .
[28] Lipika Dey,et al. A k-means type clustering algorithm for subspace clustering of mixed numeric and categorical datasets , 2011, Pattern Recognit. Lett..
[29] Francisco de A. T. de Carvalho,et al. Unsupervised pattern recognition models for mixed feature-type symbolic data , 2010, Pattern Recognit. Lett..
[30] TomasiCarlo,et al. The Earth Mover's Distance as a Metric for Image Retrieval , 2000 .
[31] Chieh-Yuan Tsai,et al. Developing a feature weight self-adjustment mechanism for a K-means clustering algorithm , 2008, Comput. Stat. Data Anal..
[32] T. Caliński,et al. A dendrite method for cluster analysis , 1974 .
[33] F.A.T. de Carvalho,et al. A Clustering Method for Mixed Feature-Type Symbolic Data using Adaptive Squared Euclidean Distances , 2007, HIS.
[34] Michael K. Ng,et al. An Entropy Weighting k-Means Algorithm for Subspace Clustering of High-Dimensional Sparse Data , 2007, IEEE Transactions on Knowledge and Data Engineering.
[35] Monique Noirhomme-Fraiture,et al. Symbolic Data Analysis and the SODAS Software , 2008 .
[36] Michael K. Ng,et al. Automated variable weighting in k-means type clustering , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[37] Angela Montanari,et al. A hierarchical modeling approach for clustering probability density functions , 2014, Comput. Stat. Data Anal..
[38] Antonio Irpino,et al. A New Wasserstein Based Distance for the Hierarchical Clustering of Histogram Symbolic Data , 2006, Data Science and Classification.
[39] Hichem Frigui,et al. Unsupervised learning of prototypes and attribute weights , 2004, Pattern Recognit..
[40] Marina Meila,et al. Comparing clusterings: an axiomatic view , 2005, ICML.
[41] Antonio Irpino,et al. Optimal histogram representation of large data sets: Fisher vs piecewise linear approximation , 2007, EGC.
[42] Hans-Hermann Bock,et al. Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data , 2000 .