Evaluation of Ocean Color Remote Sensing Algorithms for Diffuse Attenuation Coefficients and Optical Depths with Data Collected on BGC-Argo Floats

[1]  S. R. Brody,et al.  Characterizing upper-ocean mixing and its effect on the spring phytoplankton bloom with in situ data , 2015 .

[2]  E. Boss,et al.  Revisiting Ocean Color algorithms for chlorophyll a and particulate organic carbon in the Southern Ocean using biogeochemical floats , 2017 .

[3]  Bryan A. Franz,et al.  Chlorophyll aalgorithms for oligotrophic oceans: A novel approach based on three‐band reflectance difference , 2012 .

[4]  Xiaodong Zhang,et al.  Scattering by pure seawater: effect of salinity. , 2009, Optics express.

[5]  Stephen C. Riser,et al.  Observations of pigment and particle distributions in the western North Atlantic from an autonomous float and ocean color satellite , 2008 .

[6]  H. Claustre,et al.  Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll , 2006 .

[7]  T. Churilova,et al.  Light Absorption by Phytoplankton in the Upper Mixed Layer of the Black Sea: Seasonality and Parametrization , 2017, Front. Mar. Sci..

[8]  F. D’Ortenzio,et al.  Bio-optical anomalies in the world's oceans: An investigation on the diffuse attenuation coefficients for downward irradiance derived from biogeochemical Argo float measurements , 2017 .

[9]  L. Talley,et al.  Annual nitrate drawdown observed by SOCCOM profiling floats and the relationship to annual net community production: NITRATE OBSERVED BY SOCCOM FLOATS , 2017 .

[10]  F. D’Ortenzio,et al.  A novel near real-time quality-control procedure for radiometric profiles measured by Bio-Argo floats: protocols and performances , 2016 .

[11]  E. Boss,et al.  Student's tutorial on bloom hypotheses in the context of phytoplankton annual cycles , 2017, Global change biology.

[12]  Hervé Claustre,et al.  Bringing Biogeochemistry into the Argo Age , 2016 .

[13]  Fabrizio D'Ortenzio,et al.  Bio-optical characterization of subsurface chlorophyll maxima in the Mediterranean Sea from a Biogeochemical-Argo float database , 2018, Biogeosciences.

[14]  W. Mccluney,et al.  Estimation of the depth of sunlight penetration in the sea for remote sensing. , 1975, Applied optics.

[15]  H. Saito,et al.  Mixed layer depth and chlorophyll a: Profiling float observations in the Kuroshio–Oyashio Extension region , 2015 .

[16]  Merging bio-optical data from Biogeochemical-Argo floats and models in marine biogeochemistry , 2019, Biogeosciences.

[17]  A. Morel Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters) , 1988 .

[18]  R. Arnone,et al.  A model for the diffuse attenuation coefficient of downwelling irradiance , 2005 .

[19]  Craig M. Lee,et al.  A simple optical index shows spatial and temporal heterogeneity in phytoplankton community composition during the 2008 North Atlantic Bloom Experiment , 2015 .

[20]  R. Bidigare,et al.  Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre , 2004 .

[21]  Michael S Twardowski,et al.  Vertically- resolved phytoplankton carbon and net primary production from a high spectral resolution lidar. , 2017, Optics express.

[22]  B. Gentili,et al.  A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data , 2009 .

[23]  P. J. Werdell,et al.  A multi-sensor approach for the on-orbit validation of ocean color satellite data products , 2006 .

[24]  Antoine Sciandra,et al.  Introduction to the special section bio-optical and biogeochemical conditions in the South East Pacific in late 2004: the BIOSOPE program , 2008 .

[25]  R. Arnone,et al.  Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. , 2002, Applied optics.

[26]  Curtis D. Mobley,et al.  Improved irradiances for use in ocean heating, primary production, and photo-oxidation calculations. , 2012, Applied optics.

[27]  Zhongping Lee,et al.  K PAR :一个数值模糊的光学量(英文) , 2009 .

[28]  G. Korres,et al.  Modeling the Near‐Surface Diurnal Cycle of Sea Surface Temperature in the Mediterranean Sea , 2019, Journal of Geophysical Research: Oceans.

[29]  J. Kirk,et al.  A THEORETICAL ANALYSIS OF THE CONTRIBUTION OF ALGAL CELLS TO THE ATTENUATION OF LIGHT WITHIN NATURAL WATERS , 1976 .

[30]  Paul G. Falkowski,et al.  A consumer's guide to phytoplankton primary productivity models , 1997 .

[31]  X. Xing,et al.  A Spectrally Selective Attenuation Mechanism-Based K par Algorithm for Biomass Heating Effect Simulation in the Open Ocean , 2017 .

[32]  E. Boss,et al.  Improved correction for non-photochemical quenching of in situ chlorophyll fluorescence based on a synchronous irradiance profile. , 2018, Optics express.

[33]  Fabrizio D'Ortenzio,et al.  Physical and Biogeochemical Controls of the Phytoplankton Blooms in North Western Mediterranean Sea: A Multiplatform Approach Over a Complete Annual Cycle (2012–2013 DEWEX Experiment) , 2017 .

[34]  F. D’Ortenzio,et al.  Combined processing and mutual interpretation of radiometry and fluorimetry from autonomous profiling Bio‐Argo floats: Chlorophyll a retrieval , 2011 .

[35]  P. Rasch,et al.  Linking deep convection and phytoplankton blooms in the northern Labrador Sea in a changing climate , 2018, PloS one.

[36]  B. Franz,et al.  Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach , 2007 .

[37]  F. D’Ortenzio,et al.  Combined processing and mutual interpretation of radiometry and fluorometry from autonomous profiling Bio-Argo floats: 2. Colored dissolved organic matter absorption retrieval , 2012 .

[38]  E. Boss,et al.  Two databases derived from BGC-Argo float measurements for marine biogeochemical and bio-optical applications , 2017, Earth System Science Data.

[39]  Thierry Carval,et al.  On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary Array , 2019, Front. Mar. Sci..

[40]  J. Kindle,et al.  Euphotic zone depth: Its derivation and implication to ocean-color remote sensing , 2007 .

[41]  André Morel,et al.  The most oligotrophic subtropical zones of the global ocean: similarities and differences in terms of chlorophyll and yellow substance , 2010 .

[42]  J. Ryther,et al.  Photosynthesis in the Ocean as a Function of Light Intensity1 , 1956 .

[43]  R. Arnone,et al.  Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing , 2013 .

[44]  K. Banse SHOULD WE CONTINUE TO USE THE 1% LIGHT DEPTH CONVENTION FOR ESTIMATING THE COMPENSATION DEPTH OF PHYTOPLANKTON FOR ANOTHER 70 YEARS? , 2004 .

[45]  Vertical distribution of chlorophyll in dynamically distinct regions of the southern Bay of Bengal , 2019, Biogeosciences.

[46]  Soo Chin Liew,et al.  Penetration of solar radiation in the upper ocean: A numerical model for oceanic and coastal waters , 2005 .

[47]  Hervé Claustre,et al.  Observing the Global Ocean with Biogeochemical-Argo. , 2020, Annual review of marine science.

[48]  S. Ciavatta,et al.  Improved Representation of Underwater Light Field and Its Impact on Ecosystem Dynamics: A Study in the North Sea , 2020, Journal of Geophysical Research: Oceans.

[49]  S. Maritorena,et al.  Bio-optical properties of oceanic waters: A reappraisal , 2001 .

[50]  John McPherson,et al.  A time series of photosynthetically available radiation at the ocean surface from SeaWiFS and MODIS data , 2012, Asia-Pacific Environmental Remote Sensing.

[51]  Michael J. Behrenfeld,et al.  In situ evaluation of the initiation of the North Atlantic phytoplankton bloom , 2010 .

[52]  P. Xiu,et al.  Connections between physical, optical and biogeochemical processes in the Pacific Ocean , 2014 .

[53]  Fabrizio D'Ortenzio,et al.  Understanding the seasonal dynamics of phytoplankton biomass and the deep chlorophyll maximum in oligotrophic environments: A Bio‐Argo float investigation , 2014 .

[54]  E. Boss,et al.  Monitoring ocean biogeochemistry with autonomous platforms , 2020, Nature Reviews Earth & Environment.

[55]  David A. Siegel,et al.  Carbon‐based primary productivity modeling with vertically resolved photoacclimation , 2008 .