A modification of the DIRECT method for Lipschitz global optimization for a symmetric function
暂无分享,去创建一个
[1] Jianhong Wu,et al. Data clustering - theory, algorithms, and applications , 2007 .
[2] Yaroslav D. Sergeyev,et al. Index branch-and-bound algorithm for Lipschitz univariate global optimization with multiextremal constraints , 2001, J. Glob. Optim..
[3] Rudolf Scitovski,et al. Solving the parameter identification problem of mathematical models using genetic algorithms , 2004, Appl. Math. Comput..
[4] Christodoulos A. Floudas,et al. A review of recent advances in global optimization , 2009, J. Glob. Optim..
[5] J D Pinter,et al. Global Optimization in Action—Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications , 2010 .
[6] Yaroslav D. Sergeyev,et al. Global Search Based on Efficient Diagonal Partitions and a Set of Lipschitz Constants , 2006, SIAM J. Optim..
[7] Cem Iyigun,et al. A generalized Weiszfeld method for the multi-facility location problem , 2010, Oper. Res. Lett..
[8] B. P. Zhang,et al. Estimation of the Lipschitz constant of a function , 1996, J. Glob. Optim..
[9] Daniela di Serafino,et al. A Modified DIviding RECTangles Algorithm for a Problem in Astrophysics , 2011, J. Optim. Theory Appl..
[10] Yurij G. Evtushenko,et al. Numerical Optimization Techniques , 1985 .
[11] Daniel E. Finkel,et al. Additive Scaling and the DIRECT Algorithm , 2006, J. Glob. Optim..
[12] Linet Özdamar,et al. TRIOPT: a triangulation-based partitioning algorithm for global optimization , 2005 .
[13] Donald R. Jones,et al. A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..
[14] J. Kogan. Introduction to Clustering Large and High-Dimensional Data , 2007 .
[15] C. D. Perttunen,et al. Lipschitzian optimization without the Lipschitz constant , 1993 .
[16] Yaroslav D. Sergeyev,et al. A univariate global search working with a set of Lipschitz constants for the first derivative , 2009, Optim. Lett..
[17] Tamara G. Kolda,et al. Asynchronous parallel hybrid optimization combining DIRECT and GSS , 2010, Optim. Methods Softw..
[18] Anne Auger,et al. Theory of Randomized Search Heuristics , 2012, Algorithmica.
[19] Eldon Hansen,et al. Global optimization using interval analysis , 1992, Pure and applied mathematics.
[20] Xin-She Yang,et al. Firefly Algorithms for Multimodal Optimization , 2009, SAGA.
[21] Lakhdar Chiter. DIRECT algorithm: A new definition of potentially optimal hyperrectangles , 2006, Appl. Math. Comput..
[22] Friedrich Leisch,et al. A toolbox for K-centroids cluster analysis , 2006 .
[23] Anne Auger,et al. Theory of Randomized Search Heuristics: Foundations and Recent Developments , 2011, Theory of Randomized Search Heuristics.
[24] Stefano Lucidi,et al. A DIRECT-based approach exploiting local minimizations for the solution of large-scale global optimization problems , 2010, Comput. Optim. Appl..
[25] Yaroslav D. Sergeyev,et al. Lipschitz gradients for global optimization in a one-point-based partitioning scheme , 2012, J. Comput. Appl. Math..
[26] I. Alolyan. A new exclusion test for finding the global minimum , 2007 .
[27] S. Zlobec. The fundamental theorem of calculus for Lipschitz functions , 2008 .
[28] Lakhdar Chiter. A new sampling method in the DIRECT algorithm , 2006, Appl. Math. Comput..
[29] A. Neumaier. Complete search in continuous global optimization and constraint satisfaction , 2004, Acta Numerica.
[30] A. A. Zhigli︠a︡vskiĭ,et al. Stochastic Global Optimization , 2007 .
[31] Y. D. Sergeyev,et al. Global Optimization with Non-Convex Constraints - Sequential and Parallel Algorithms (Nonconvex Optimization and its Applications Volume 45) (Nonconvex Optimization and Its Applications) , 2000 .
[32] Marco Gaviano,et al. A global minimization algorithm for Lipschitz functions , 2007, Optim. Lett..
[33] Marc Teboulle,et al. A Unified Continuous Optimization Framework for Center-Based Clustering Methods , 2007, J. Mach. Learn. Res..
[34] Daniel Scholz,et al. The big cube small cube solution method for multidimensional facility location problems , 2010, Comput. Oper. Res..
[35] D. Finkel,et al. Direct optimization algorithm user guide , 2003 .
[36] Ying Zhang,et al. A filled function method applied to nonsmooth constrained global optimization , 2009, J. Comput. Appl. Math..
[37] Lonnie Hamm,et al. GLOBAL OPTIMIZATION METHODS , 2002 .
[38] Arnold Neumaier,et al. Global Optimization by Multilevel Coordinate Search , 1999, J. Glob. Optim..
[39] Yaroslav D. Sergeyev,et al. Lipschitz Global Optimization , 2011 .
[40] Y. Sergeyev,et al. Univariate geometric Lipschitz global optimization algorithms , 2012 .
[41] Zeev Volkovich,et al. Building initial partitions through sampling techniques , 2007, Eur. J. Oper. Res..
[42] C. Iyigun. Probabilistic Distance Clustering , 2011 .
[43] H. Spath,et al. Cluster-Formation und Analyse. , 1984 .
[44] Sanjo Zlobec. Equivalent formulations of the gradient , 2011, J. Glob. Optim..
[45] Jonas Mockus,et al. On the Pareto Optimality in the Context of Lipschitzian Optimization , 2011, Informatica.
[46] Robert J. Vanderbei,et al. Extension of Piyavskii's Algorithm to Continuous Global Optimization , 1999, J. Glob. Optim..
[47] B. Shubert. A Sequential Method Seeking the Global Maximum of a Function , 1972 .
[48] C. T. Kelley,et al. Modifications of the direct algorithm , 2001 .
[49] P. Pardalos,et al. Handbook of global optimization , 1995 .
[50] Tamara G. Kolda,et al. Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..
[51] C. T. Kelley,et al. A Locally-Biased form of the DIRECT Algorithm , 2001, J. Glob. Optim..
[52] Kristian Sabo,et al. One-dimensional center-based l1-clustering method , 2013, Optim. Lett..