Spatio-Temporal Random Partition Models

The number of scientific fields that regularly collect data that are spatio-temporal continues to grow. An intuitive feature of this type of data is that measurements taken on experimental units near each other in time and space tend to be similar. As such, many methods developed to accommodate spatio-temporal dependent structures attempt to borrow strength among units close in space and time, which constitutes an implicit space-time grouping. We develop a class of dependent random partition models that explicitly models this spatio-temporal clustering by way of a dependent random partition model. We first detail how temporal dependence is incorporated so that partitions evolve gently over time. Then conditional and marginal properties of the joint model are derived. We then demonstrate how space can be integrated. Computation strategies are detailed and we illustrate the methodology through simulations and an application.

[1]  Garritt L. Page,et al.  Bayesian Product Partition Models , 2018, Wiley StatsRef: Statistics Reference Online.

[2]  Lorenzo Trippa,et al.  Dependent Species Sampling Models for Spatial Density Estimation , 2017 .

[3]  Marina Vannucci,et al.  A spatiotemporal nonparametric Bayesian model of multi-subject fMRI data , 2016 .

[4]  J. E. Griffin,et al.  Order-Based Dependent Dirichlet Processes , 2006 .

[5]  Peter Müller,et al.  A Product Partition Model With Regression on Covariates , 2011, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[6]  M. Vannucci,et al.  A Bayesian Nonparametric Spiked Process Prior for Dynamic Model Selection , 2019, Bayesian Analysis.

[7]  Edzer Pebesma,et al.  Spatio-Temporal Interpolation using gstat , 2016, R J..

[8]  Garritt L. Page,et al.  Spatial Product Partition Models , 2015, 1504.04489.

[9]  Jason A. Duan,et al.  Modeling Disease Incidence Data with Spatial and Spatio Temporal Dirichlet Process Mixtures , 2008, Biometrical journal. Biometrische Zeitschrift.

[10]  L. Hubert,et al.  Comparing partitions , 1985 .

[11]  Matteo Ruggiero,et al.  Are Gibbs-Type Priors the Most Natural Generalization of the Dirichlet Process? , 2015, IEEE transactions on pattern analysis and machine intelligence.

[12]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[13]  P. Green,et al.  Bayesian Model-Based Clustering Procedures , 2007 .

[14]  Stephen Walker,et al.  A Nonparametric Model for Stationary Time Series , 2014 .

[15]  S. MacEachern,et al.  Bayesian Nonparametric Spatial Modeling With Dirichlet Process Mixing , 2005 .

[16]  Yuan Ji,et al.  A Bayesian random partition model for sequential refinement and coagulation , 2019, Biometrics.

[17]  Arnaud Doucet,et al.  Generalized Polya Urn for Time-varying Dirichlet Process Mixtures , 2007, UAI.

[18]  Wesley O Johnson,et al.  Bayesian Nonparametric Nonproportional Hazards Survival Modeling , 2009, Biometrics.

[19]  Moreno Bevilacqua,et al.  Analysis of Random Fields Using CompRandFld , 2015 .

[20]  Jason A. Duan,et al.  Generalized spatial dirichlet process models , 2007 .

[21]  Garritt L. Page,et al.  Calibrating covariate informed product partition models , 2018, Stat. Comput..

[22]  Aki Vehtari,et al.  Understanding predictive information criteria for Bayesian models , 2013, Statistics and Computing.

[23]  Radford M. Neal Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[24]  D. Binder Bayesian cluster analysis , 1978 .

[25]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[26]  Sonia Petrone,et al.  A Predictive Study of Dirichlet Process Mixture Models for Curve Fitting , 2014, Scandinavian journal of statistics, theory and applications.

[27]  Terrance D. Savitsky Bayesian Nonparameteric Multiresolution Estimation for the American Community Survey , 2015 .

[28]  A. Gelfand,et al.  Hybrid Dirichlet mixture models for functional data , 2009 .

[29]  Yuan Ji,et al.  A Time‐Series DDP for Functional Proteomics Profiles , 2012, Biometrics.

[30]  Lucia Paci,et al.  Dynamic model-based clustering for spatio-temporal data , 2018, Stat. Comput..

[31]  Arnaud Doucet,et al.  Generalized Pólya Urn for Time-Varying Pitman-Yor Processes , 2017, J. Mach. Learn. Res..

[32]  Luis Gutiérrez,et al.  A time dependent Bayesian nonparametric model for air quality analysis , 2016, Comput. Stat. Data Anal..