Microwave Phase Shifting Using Coherent Photonic Integrated Circuits

An optically coherent silicon-on-insulator circuit for microwave phase shifting is presented. Such photonic integrated circuits provide advantages over more-complicated incoherent methods and coherent techniques implemented in bulk fiber-optic components. The circuit is described theoretically with supporting experimental data. Continuous microwave phase control at 49 GHz is demonstrated, with an electrical power to achieve 2π phase shift of 80 mW and a 3-dB phase modulation bandwidth of 170 kHz.

[1]  Michael L Davenport,et al.  Title: font: times; size: 18 point; style: plain; justified: center; capitalization: first word and Names only , 2012 .

[2]  G. Fish,et al.  Heterogeneous photonic integration for microwave photonic applications , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[3]  Kun-Yii Tu,et al.  Demonstration of a Tunable Microwave-Photonic Notch Filter Using Low-Loss Silicon Ring Resonators , 2009, Journal of Lightwave Technology.

[4]  L. Vivien,et al.  Handbook of Silicon Photonics , 2013 .

[5]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[6]  Vincent J. Urick Considerations and application opportunities for integrated microwave photonics , 2016, 2016 Optical Fiber Communications Conference and Exhibition (OFC).

[7]  John Bowers Heterogeneous silicon III–V Photonic Integrated Circuits , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[8]  J. F. Coward,et al.  A photonic integrated-optic RF phase shifter for phased array antenna beam-forming applications , 1993 .

[9]  J. Bowers,et al.  Hybrid Silicon Photonic Integrated Circuit Technology , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[10]  Jonathan A. Cox,et al.  Electronic interfaces to silicon photonics , 2014, Photonics West - Optoelectronic Materials and Devices.

[11]  José Capmany,et al.  Integrated microwave photonics , 2019, Nature Photonics.

[12]  Hoon Kim,et al.  Chirp characteristics of dual-drive. Mach-Zehnder modulator with a finite DC extinction ratio , 2002, IEEE Photonics Technology Letters.

[13]  R. Priest,et al.  Analysis of fiber interferometer utilizing 3 × 3 fiber coupler , 1982 .

[14]  K. Williams,et al.  Equations for Two-Tone Analog Optical Phase Modulation With an Asymmetric Interferometer , 2013, IEEE Photonics Technology Letters.

[15]  J. Goodman,et al.  Fiber-optic lattice signal processing , 1984, Proceedings of the IEEE.

[16]  G. Cocorullo,et al.  Silicon thermooptical micromodulator with 700-kHz -3-dB bandwidth , 1995, IEEE Photonics Technology Letters.

[17]  G. Allen Vawter,et al.  Phased-array antenna control by a monolithic photonic integrated circuit , 1991, Defense, Security, and Sensing.

[18]  C. Roeloffzen,et al.  Silicon nitride microwave photonic circuits. , 2013, Optics express.

[19]  L A Coldren,et al.  High Performance InP-Based Photonic ICs—A Tutorial , 2011, Journal of Lightwave Technology.

[20]  Vincent J. Urick,et al.  Tandem Electrooptic Modulation and Interferometric Detection: Theory and Application , 2013, IEEE Photonics Journal.

[21]  B. Ortega,et al.  A tutorial on microwave photonic filters , 2006, Journal of Lightwave Technology.

[22]  Ray T. Chen,et al.  Recent advances in silicon-based passive and active optical interconnects. , 2015, Optics express.

[23]  Daniel Pérez,et al.  Integrated microwave photonics: State of the art and future trends , 2014, 2014 16th International Conference on Transparent Optical Networks (ICTON).

[24]  Gerhard A. Koepf,et al.  Optical Processor For Phased-Array Antenna Beam Formation , 1984, Other Conferences.

[25]  S. Corzine,et al.  InP Photonic Integrated Circuits , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[26]  E.C.M. Pennings,et al.  Optical multi-mode interference devices based on self-imaging: principles and applications , 1995 .

[27]  M. Kohtoku,et al.  Evaluation of the rejection ratio of an MMI-based higher order mode filter using optical low-coherence reflectometry , 2002, IEEE Photonics Technology Letters.

[28]  T. Barwicz,et al.  Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides , 2005, Journal of Lightwave Technology.

[29]  J. Yardley,et al.  Fast and low-power thermooptic switch on thin silicon-on-insulator , 2003, IEEE Photonics Technology Letters.

[30]  Frank Bucholtz,et al.  Long-Haul Analog Photonics , 2011, Journal of Lightwave Technology.

[31]  A. Rickman The commercialization of silicon photonics , 2014, Nature Photonics.

[32]  C.K. Madsen,et al.  A Novel Broadband Photonic RF Phase Shifter , 2008, Journal of Lightwave Technology.

[33]  David Marpaung,et al.  RF Engineering Meets Optoelectronics: Progress in Integrated Microwave Photonics , 2015, IEEE Microwave Magazine.

[34]  R. Priest Analysis of fiber interferometer utilizing 3 × 3 fiber coupler , 1982, IEEE Journal of Quantum Electronics.

[35]  David Chapman,et al.  Uniformity study of wafer-scale InP-to-silicon hybrid integration , 2011 .

[36]  Vincent J. Urick,et al.  Analysis of Photonic Phase-Shifting Technique Employing Amplitude-Controlled Fiber-Optic Delay Lines , 2012 .

[37]  Dennis W. Prather,et al.  Myths and rumours of silicon photonics , 2012, Nature Photonics.

[38]  Hiroyo Ogawa,et al.  Self-heterodyning optical waveguide beam forming and steering network integrated on Lithium Niobate substrate , 1995 .

[39]  R. Minasian,et al.  Photonic RF Phase Shifter Based on Optical Carrier and RF Modulation Sidebands Amplitude and Phase Control , 2012, Journal of Lightwave Technology.

[40]  Kun-Yii Tu,et al.  Linear phase-and-frequency-modulated photonic links using optical discriminators. , 2012, Optics express.

[42]  Ken-ichi Kitayama,et al.  Multimode Si-wire waveguides for integrated optical delay lines , 2009 .

[44]  H. Fetterman,et al.  Single-chip integrated electro-optic polymer photonic RF phase shifter array , 2003 .