On Normal Forms of Nonlinear Systems Affine in Control

The nonlinear equivalences of both finite and infinite zero structures of linear systems have been well understood for single input single output systems and have found many applications in nonlinear control theory. The extensions of these notions to multiple input multiple output systems have proven to be highly sophisticated. In this paper, we propose constructive algorithms for decomposing a nonlinear system that is affine in control. These algorithms require modest assumptions on the system and apply to general multiple input multiple output systems that do not necessarily have the same number of inputs and outputs. They lead to various normal form representations and reveal the structure at infinity, the zero dynamics and the invertibility properties, all of which represent nonlinear equivalences of relevant linear system structural properties.

[1]  Daniel Liberzon,et al.  Output-input stability and minimum-phase nonlinear systems , 2002, IEEE Trans. Autom. Control..

[2]  J. Massey,et al.  Invertibility of linear time-invariant dynamical systems , 1969 .

[3]  H. Nijmeijer,et al.  Zeros at infinity for affine nonlinear control systems , 1985 .

[4]  A. Isidori,et al.  Local stabilization of minimum-phase nonlinear systems , 1988 .

[5]  Daizhan Cheng,et al.  Generalized normal form and stabilization of non-linear systems , 2003 .

[6]  Andrew R. Teel,et al.  Trading the stability of finite zeros for global stabilization of nonlinear cascade systems , 2002, IEEE Trans. Autom. Control..

[7]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[8]  Jessy W. Grizzle,et al.  Rank invariants of nonlinear systems , 1989 .

[9]  Daniel Liberzon Output-input stability implies feedback stabilization , 2004, Syst. Control. Lett..

[10]  Alberto Isidori,et al.  Nonlinear Control Systems II , 1999 .

[11]  Alessandro Astolfi,et al.  Immersion and invariance adaptive control of linear multivariable systems , 2003, Syst. Control. Lett..

[12]  R. Marino,et al.  Equivalence of Nonlinear Systems to Input-Output Prime Forms , 1994 .

[13]  Claude H. Moog,et al.  Nonlinear decoupling and structure at infinity , 1988, Math. Control. Signals Syst..

[14]  A. Isidori Nonlinear feedback, structure at infinity and the input-output linearization problem , 1984 .

[15]  M. Fliess,et al.  A new approach to the structure at infinity of nonlinear systems , 1986 .

[16]  H. Khalil,et al.  A separation principle for the stabilization of a class of nonlinear systems , 1997 .

[17]  R. Hirschorn Invertibility of multivariable nonlinear control systems , 1979 .

[18]  Zhong-Ping Jiang,et al.  Output-feedback stabilization of a class of uncertain non-minimum-phase nonlinear systems , 2005, Autom..

[19]  H. Nijmeijer,et al.  Dynamic input-output decoupling of nonlinear control systems , 1988 .

[20]  H. Khalil,et al.  Output feedback stabilization of fully linearizable systems , 1992 .

[21]  Zhong-Ping Jiang,et al.  Design of Robust Adaptive Controllers for Nonlinear Systems with Dynamic Uncertainties , 1998, Autom..

[22]  George Meyer,et al.  Stable inversion for nonlinear systems , 1997, Autom..

[23]  Sahjendra N. Singh A modified algorithm for invertibility in nonlinear systems , 1981 .

[24]  P. Kokotovic,et al.  Global stabilization of partially linear composite systems , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[25]  A. Astolfi,et al.  Output feedback stabilization of a class of uncertain nonlinear systems , 2004, Proceedings of the 2004 American Control Conference.

[26]  A. Isidori,et al.  Adaptive control of linearizable systems , 1989 .

[27]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[28]  M. Hautus The Formal Laplace Transform for Smooth Linear Systems , 1976 .

[29]  Thor I. Fossen,et al.  Guidance and control of ocean vehicles , 1994 .

[30]  A. Teel,et al.  Tools for Semiglobal Stabilization by Partial State and Output Feedback , 1995 .

[31]  A. Isidori,et al.  Asymptotic stabilization of minimum phase nonlinear systems , 1991 .

[32]  Alessandro Astolfi,et al.  Norm estimators and global output feedback stabilization of nonlinear systems with ISS inverse dynamics , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[33]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[34]  Alberto Isidori,et al.  Nonlinear control systems: an introduction (2nd ed.) , 1989 .

[35]  Zhengtao Ding,et al.  Asymptotic rejection of asymmetric periodic disturbances in output-feedback nonlinear systems , 2007, Autom..

[36]  A. Isidori,et al.  Nonlinear decoupling via feedback: A differential geometric approach , 1981 .

[37]  R. Brockett,et al.  The reproducibility of multivariable systems , 1964 .

[38]  A. Isidori,et al.  A frequency domain philosophy for nonlinear systems, with applications to stabilization and to adaptive control , 1984, The 23rd IEEE Conference on Decision and Control.

[39]  C. Moog,et al.  Nonlinear Control Systems: An Algebraic Setting , 1999 .

[40]  A. Teel,et al.  Global stabilizability and observability imply semi-global stabilizability by output feedback , 1994 .

[41]  A. Isidori Nonlinear Control Systems , 1985 .

[42]  B. Molinari Structural invariants of linear multivariable systems , 1978 .

[43]  Riccardo Marino,et al.  Nonlinear control design: geometric, adaptive and robust , 1995 .

[44]  P. Sannuti,et al.  A special coordinate basis of multivariable linear systems- Finite and infinite zero structure , 1986, 1986 25th IEEE Conference on Decision and Control.

[45]  Zhong-Ping Jiang,et al.  A unifying framework for global regulation via nonlinear output feedback: from ISS to iISS , 2004, IEEE Transactions on Automatic Control.

[46]  B. Schwartz,et al.  Global normal forms for MIMO nonlinear systems, with application to stabilization and disturbance attenuation , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[47]  Zongli Lin,et al.  On stabilization of nonlinear systems affine in control , 2008, 2008 American Control Conference.

[48]  Kristin Y. Pettersen,et al.  Exponential stabilization of an underactuated surface vessel , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[49]  Jie Huang,et al.  On the solvability of the regulator equations for a class of nonlinear systems , 2003, IEEE Trans. Autom. Control..

[50]  L. Silverman Inversion of multivariable linear systems , 1969 .