Fluidizable mesoporous silica composites for thermochemical energy storage

[1]  Parameshwaran Rajagopalan,et al.  Preparation and characterization of metal organic framework based composite materials for thermochemical energy storage applications , 2022, Applied Surface Science Advances.

[2]  A. Auroux,et al.  Influence of Silica Functionalization on Water Sorption and Thermochemical Heat Storage of Mesoporous SBA-15/CaCl2 Composites , 2021 .

[3]  Yulong Ding,et al.  MgSO4-expanded graphite composites for mass and heat transfer enhancement of thermochemical energy storage , 2021 .

[4]  Changying Zhao,et al.  Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: A technical review , 2020 .

[5]  C. Serre,et al.  A new strontium bromide MOF composite with improved performance for solar energy storage application , 2019, Journal of Energy Storage.

[6]  Chao Xu,et al.  Structure and hydration state characterizations of MgSO4-zeolite 13x composite materials for long-term thermochemical heat storage , 2019, Solar Energy Materials and Solar Cells.

[7]  H. Spliethoff,et al.  Design of a MW-scale thermo-chemical energy storage reactor , 2018, Energy Reports.

[8]  Xing Ju,et al.  Study of the hydration behavior of zeolite-MgSO4 composites for long-term heat storage , 2018 .

[9]  S. Bennici,et al.  CaCl2-containing composites as thermochemical heat storage materials , 2017 .

[10]  M. Degrez,et al.  Further improvement of the synthesis of silica gel and CaCl2 composites: Enhancement of energy storage density and stability over cycles for solar heat storage coupled with space heating applications , 2017 .

[11]  H. Fischer,et al.  A review of salt hydrates for seasonal heat storage in domestic applications , 2017 .

[12]  M. Degrez,et al.  A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability , 2017 .

[13]  Ruzhu Wang,et al.  Development of SrBr2 composite sorbents for a sorption thermal energy storage system to store low-temperature heat , 2016 .

[14]  V. Chevrier,et al.  Formation of liquid water at low temperatures via the deliquescence of calcium chloride: Implications for Antarctica and Mars , 2016 .

[15]  C. Kaps,et al.  Thermochemical investigation of the water uptake behavior of MgSO4 hydrates in host materials with different pore size , 2015 .

[16]  Ruzhu Wang,et al.  Performance study of composite silica gels with different pore sizes and different impregnating hygroscopic salts , 2014 .

[17]  Saffa Riffat,et al.  Salt impregnated desiccant matrices for ‘open’ thermochemical energy storage—Selection, synthesis and characterisation of candidate materials , 2014 .

[18]  Antje Wörner,et al.  Improving powder bed properties for thermochemical storage by adding nanoparticles , 2014 .

[19]  Simona Bennici,et al.  Heats of water sorption studies on zeolite-MgSO4 composites as potential thermochemical heat storage materials , 2013 .

[20]  Lingbao Wang,et al.  Effect of pore size on the performance of composite adsorbent , 2013, Adsorption.

[21]  Yuri I. Aristov,et al.  Composites "binary salts in porous matrix" for adsorption heat transformation , 2013 .

[22]  Yuri I. Aristov,et al.  Composites ‘salt inside porous matrix’ for adsorption heat transformation: a current state-of-the-art and new trends , 2012 .

[23]  C. Chao,et al.  Activated carbon, silica-gel and calcium chloride composite adsorbents for energy efficient solar adsorption cooling and dehumidification systems , 2012 .

[24]  Ali H. Abedin,et al.  A Critical Review of Thermochemical Energy Storage Systems , 2011 .

[25]  F. Kuznik,et al.  Development and characterisation of a new MgSO4−zeolite composite for long-term thermal energy storage , 2011 .

[26]  Yuri I. Aristov,et al.  Adsorption properties of composite materials (LiCl + LiBr)/silica , 2009 .

[27]  Yuri I. Aristov,et al.  Water sorption on composite ''silica modified by calcium nitrate" , 2009 .

[28]  C. Kaps,et al.  Humidity controlled calorimetric investigation of the hydration of MgSO4 hydrates , 2008 .

[29]  Shengwei Wang,et al.  Experimental study on composite silica gel supported CaCl2 sorbent for low grade heat storage , 2006 .

[30]  P. Smirniotis,et al.  Synthesis of ordered large pore SBA-15 spherical particles for adsorption of biomolecules. , 2006, Journal of chromatography. A.

[31]  G. Cacciola,et al.  A family of new working materials for solid sorption air conditioning systems , 2002 .

[32]  R Eden,et al.  World Energy Outlook 2020 , 1981, World Energy Outlook.

[33]  J. Paulik,et al.  Thermogravimetric examination of the dehydration process of calcium bromide hydrate under quasi isothermal and quasi isobaric conditions , 1979 .

[34]  Yupeng Wu,et al.  Development of MgSO4/mesoporous silica composites for thermochemical energy storage: the role of porous structure on water adsorption , 2022, Energy Reports.

[35]  C. Barreneche,et al.  The relevance of thermochemical energy storage in the last two decades: The analysis of research evolution , 2022, Journal of Energy Storage.

[36]  F. Tezel,et al.  A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications , 2017 .

[37]  T. Runčevski,et al.  Dehydration of Magnesium Bromide Hexahydrate Studied by in situ X-ray Powder Diffraction , 2013 .

[38]  Farid B. Cortés,et al.  Water sorption on silica- and zeolite-supported hygroscopic salts for cooling system applications , 2012 .

[39]  Thomas Schmidt,et al.  Hydration and dehydration of salt hydrates and hydroxides for thermal energy storage - kinetics and energy release , 2012 .

[40]  S. F. Smeding,et al.  Thermochemical seasonal solar heat storage with MgCl2.6H2O: first upscaling of the reactor , 2011 .

[41]  Rindt,et al.  Materials for thermochemical storage characterization of magnesium sulfate , 2009 .

[42]  Yuri I. Aristov,et al.  Experimental study on the kinetics of water vapor sorption on selective water sorbents, silica gel and alumina under typical operating conditions of sorption heat pumps , 2003 .

[43]  Yuri I. Aristov,et al.  Selective water sorbents for multiple applications, 8. sorption properties of CaCl2−SiO2 sol-gel composites , 1999 .