Triplet excitation energies from multiconfigurational short-range density-functional theory response calculations.

Linear response theory for the multiconfigurational short-range density functional theory (MC-srDFT) model is extended to triplet response with a singlet reference wave function. The triplet linear response equations for MC-srDFT are derived for a general hybrid srGGA functional and implemented in the Dalton program. Triplet excitation energies are benchmarked against the CC3 model of coupled cluster theory and the complete-active-space second-order perturbation theory using three different short-range functionals (srLDA, srPBE, and srPBE0), both with full linear response and employing the generalized Tamm-Dancoff approximation (gTDA). We find that using gTDA is required for obtaining reliable triplet excitations; for the CAS-srPBE model, the mean absolute deviation decreases from 0.40 eV to 0.26 eV, and for the CAS-srLDA model, it decreases from 0.29 eV to 0.21 eV. As expected, the CAS-srDFT model is found to be superior to the HF-srDFT model when analyzing the calculated triplet excitations for molecules in the benchmark set where increased static correlation is expected.

[1]  Andreas Dreuw,et al.  Single-reference ab initio methods for the calculation of excited states of large molecules. , 2005, Chemical reviews.

[2]  W. Thiel,et al.  Benchmarks of electronically excited states: basis set effects on CASPT2 results. , 2010, The Journal of chemical physics.

[3]  Yann Garniron,et al.  A Mountaineering Strategy to Excited States: Highly Accurate Reference Energies and Benchmarks. , 2018, Journal of chemical theory and computation.

[4]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited , 2001 .

[5]  A. Savin,et al.  Short-Range Exchange-Correlation Energy of a Uniform Electron Gas with Modified Electron-Electron Interaction , 2004, cond-mat/0611559.

[6]  David Feller,et al.  The role of databases in support of computational chemistry calculations , 1996, J. Comput. Chem..

[7]  H. Werner,et al.  A short-range gradient-corrected density functional in long-range coupled-cluster calculations for rare gas dimers. , 2005, Physical chemistry chemical physics : PCCP.

[8]  Jeppe Olsen,et al.  Second‐order Mo/ller–Plesset perturbation theory as a configuration and orbital generator in multiconfiguration self‐consistent field calculations , 1988 .

[9]  Andreas Dreuw,et al.  The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states , 2015 .

[10]  Björn O. Roos,et al.  Second-order perturbation theory with a complete active space self-consistent field reference function , 1992 .

[11]  H. Stoll,et al.  Development and assessment of a short-range meta-GGA functional. , 2009, The Journal of chemical physics.

[12]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[13]  Andreas Savin,et al.  Long-range/short-range separation of the electron-electron interaction in density functional theory , 2004 .

[14]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[15]  W. Klopper,et al.  Communication: A hybrid Bethe-Salpeter/time-dependent density-functional-theory approach for excitation energies. , 2018, The Journal of chemical physics.

[16]  S. Grimme,et al.  A COMBINATION OF KOHN-SHAM DENSITY FUNCTIONAL THEORY AND MULTI-REFERENCE CONFIGURATION INTERACTION METHODS , 1999 .

[17]  Kerstin Andersson,et al.  Second-order perturbation theory with a CASSCF reference function , 1990 .

[18]  Stefan Knecht,et al.  Multi-configuration time-dependent density-functional theory based on range separation. , 2012, The Journal of chemical physics.

[19]  Benjamin Helmich-Paris CASSCF linear response calculations for large open-shell molecules. , 2019, The Journal of chemical physics.

[20]  Poul Jørgensen,et al.  Response functions from Fourier component variational perturbation theory applied to a time-averaged quasienergy , 1998 .

[21]  Holger Patzelt,et al.  RI-MP2: optimized auxiliary basis sets and demonstration of efficiency , 1998 .

[22]  Donald G Truhlar,et al.  Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems. , 2017, Accounts of chemical research.

[23]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[24]  C. Marian,et al.  Performance of the Density Functional Theory/Multireference Configuration Interaction Method on Electronic Excitation of Extended π-Systems. , 2008, Journal of chemical theory and computation.

[25]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[26]  K. Pernal,et al.  Calculation of electronic excited states of molecules using the Helmholtz free-energy minimum principle , 2013 .

[27]  A. Savin,et al.  On degeneracy, near-degeneracy and density functional theory , 1996 .

[28]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[29]  John C. Slater,et al.  The self-consistent field for molecules and solids , 1974 .

[30]  Andreas Savin,et al.  Density functionals for the Yukawa electron-electron interaction , 1995 .

[31]  Gunnar Schmitz,et al.  Auxiliary basis sets for density-fitted correlated wavefunction calculations: weighted core-valence and ECP basis sets for post-d elements. , 2012, Physical chemistry chemical physics : PCCP.

[32]  Saverio Moroni,et al.  Local-spin-density functional for multideterminant density functional theory , 2006 .

[33]  John C. Slater,et al.  Quantum Theory of Molecules and Solids Vol. 4: The Self‐Consistent Field for Molecules and Solids , 1974 .

[34]  Jeppe Olsen,et al.  Linear response calculations for large scale multiconfiguration self‐consistent field wave functions , 1988 .

[35]  D. Tozer,et al.  On the triplet instability in TDDFT , 2013 .

[36]  A. Schäfer,et al.  Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , 1994 .

[37]  H. Lischka,et al.  Multiconfiguration self-consistent field and multireference configuration interaction methods and applications. , 2012, Chemical reviews.

[38]  Trygve Helgaker,et al.  Four‐component relativistic Kohn–Sham theory , 2002, J. Comput. Chem..

[39]  Celestino Angeli,et al.  Introduction of n-electron valence states for multireference perturbation theory , 2001 .

[40]  E. Gross,et al.  Time-dependent density functional theory. , 2004, Annual review of physical chemistry.

[41]  Jun Li,et al.  Basis Set Exchange: A Community Database for Computational Sciences , 2007, J. Chem. Inf. Model..

[42]  D. Tozer,et al.  Influence of Triplet Instabilities in TDDFT. , 2011, Journal of chemical theory and computation.

[43]  Carlo Adamo,et al.  The calculations of excited-state properties with Time-Dependent Density Functional Theory. , 2013, Chemical Society reviews.

[44]  A. Savin,et al.  A multiconfigurational hybrid density-functional theory. , 2012, The Journal of chemical physics.

[45]  Stefan Knecht,et al.  Assessment of charge-transfer excitations with time-dependent, range-separated density functional theory based on long-range MP2 and multiconfigurational self-consistent field wave functions. , 2013, The Journal of chemical physics.

[46]  Trond Saue,et al.  Linear response at the 4-component relativistic level: Application to the frequency-dependent dipole polarizabilities of the coinage metal dimers , 2003 .

[47]  Paweł Sałek,et al.  Density functional theory of nonlinear triplet response properties with applications to phosphorescence , 2003 .

[48]  Luca Frediani,et al.  The Dalton quantum chemistry program system , 2013, Wiley interdisciplinary reviews. Computational molecular science.

[49]  I. Tamm Relativistic Interaction of Elementary Particles , 1945 .

[50]  Erik D Hedegård,et al.  Excitation Spectra of Nucleobases with Multiconfigurational Density Functional Theory. , 2016, The journal of physical chemistry. A.

[51]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[52]  S. Knecht,et al.  Combining extrapolation with ghost interaction correction in range-separated ensemble density functional theory for excited states. , 2017, The Journal of chemical physics.

[53]  Poul Jørgensen,et al.  The second-order approximate coupled cluster singles and doubles model CC2 , 1995 .

[54]  P. Gori-Giorgi,et al.  A short-range gradient-corrected spin density functional in combination with long-range coupled-cluster methods: Application to alkali-metal rare-gas dimers , 2006 .

[55]  S. Dancoff Non-Adiabatic Meson Theory of Nuclear Forces , 1950 .

[56]  D. Tozer,et al.  Overcoming low orbital overlap and triplet instability problems in TDDFT. , 2012, The journal of physical chemistry. A.

[57]  Paweł Sałek,et al.  Density-functional theory of linear and nonlinear time-dependent molecular properties , 2002 .

[58]  Erik D Hedegård,et al.  Investigation of Multiconfigurational Short-Range Density Functional Theory for Electronic Excitations in Organic Molecules. , 2016, Journal of chemical theory and computation.

[59]  Jacob Kongsted,et al.  Polarizable embedding with a multiconfiguration short-range density functional theory linear response method. , 2015, The Journal of chemical physics.

[60]  J. K. Pedersen,et al.  Description of correlation and relativistic effects in calculations of molecular properties , 2004 .

[61]  M. E. Casida,et al.  Progress in time-dependent density-functional theory. , 2011, Annual review of physical chemistry.

[62]  Andreas Savin,et al.  Combining long-range configuration interaction with short-range density functionals , 1997 .

[63]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[64]  T. Helgaker,et al.  Linear response at the 4-component relativistic density-functional level: application to the frequency-dependent dipole polarizability of Hg, AuH and PtH2 , 2005 .

[65]  Hua Zhang,et al.  An updated overview on the development of new photosensitizers for anticancer photodynamic therapy , 2017, Acta pharmaceutica Sinica. B.

[66]  E. Giner,et al.  Range-separated multideterminant density-functional theory with a short-range correlation functional of the on-top pair density. , 2019, The Journal of chemical physics.

[67]  E. Hedegård Assessment of oscillator strengths with multiconfigurational short-range density functional theory for electronic excitations in organic molecules , 2017 .

[68]  Julien Toulouse,et al.  Multiconfigurational short-range density-functional theory for open-shell systems. , 2017, The Journal of chemical physics.

[69]  Trygve Helgaker,et al.  The CC3 model: An iterative coupled cluster approach including connected triples , 1997 .

[70]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[71]  Rebecca K. Carlson,et al.  Multiconfiguration Pair-Density Functional Theory. , 2014, Journal of chemical theory and computation.

[72]  C. Cramer,et al.  Combining Wave Function Methods with Density Functional Theory for Excited States. , 2018, Chemical reviews.

[73]  Julien Toulouse,et al.  On the universality of the long-/short-range separation in multiconfigurational density-functional theory. , 2007, The Journal of chemical physics.

[74]  Andy R. Terrel,et al.  SymPy: Symbolic computing in Python , 2017, PeerJ Prepr..

[75]  J. Olsen,et al.  Triplet excitation properties in large scale multiconfiguration linear response calculations , 1989 .