Large scale simulation of block copolymers with cell dynamics

Cell dynamics simulation (CDS) is a fast method to simulate kinetic processes in phase separating systems of large sizes. We review this method applied to block copolymer systems and illustrate it on a set of physical phenomena occurring in these systems. Achievements of CDS demonstrate, that the method can describe such complex phenomena rather well and therefore, is a complementary method to other more elaborate but slow techniques to which it can serve as a precursor.

[1]  P. Chaikin,et al.  Shear ordering in thin films of spherical block copolymer. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[2]  Puri,et al.  Study of phase-separation dynamics by use of cell dynamical systems. I. Modeling. , 1988, Physical review. A, General physics.

[3]  Baohui Li,et al.  Confinement-induced novel morphologies of block copolymers. , 2006, Physical review letters.

[4]  H. Yabu,et al.  Differences of internal structures between amphiphilic and hydrophobic block-copolymer nanoparticles. , 2007, Journal of Nanoscience and Nanotechnology.

[5]  T. Russell,et al.  Cylindrically Confined Diblock Copolymers , 2009 .

[6]  Honglai Liu,et al.  Microdomain Morphology of Symmetrical Diblock Copolymer Thin Films Confined in a Slit , 2002 .

[7]  Orientation selection in lamellar phases by oscillatory shears. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  R. Essery,et al.  Spinodal decomposition and pattern formation near surfaces , 1990 .

[9]  Gregory C Rutledge,et al.  Electrospun polymer nanofibers with internal periodic structure obtained by microphase separation of cylindrically confined block copolymers. , 2006, Nano letters.

[10]  Taehyung Kim,et al.  The influence of confinement and curvature on the morphology of block copolymers , 2005 .

[11]  M. Doi,et al.  Computer simulations of domain growth under steady shear flow , 1990 .

[12]  Density Functional Theory for Block Copolymer Melts and Blends , 2004, cond-mat/0410383.

[13]  Defect structures in the growth kinetics of the Swift-Hohenberg model. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Karl Amundson,et al.  Alignment of Lamellar Block Copolymer Microstructure in an Electric Field. 2. Mechanisms of Alignment , 1994 .

[15]  Taehyung Kim,et al.  From cylinders to helices upon confinement , 2005 .

[16]  Honglai Liu,et al.  Molecular thermodynamics concerning complex materials , 2002 .

[17]  Baohui Li,et al.  Self-assembly of diblock copolymers confined in cylindrical nanopores. , 2007, The Journal of chemical physics.

[18]  Marco Pinna,et al.  Cubic phases of block copolymers under shear and electric fields by cell dynamics simulation. I. Spherical phase. , 2006, The Journal of chemical physics.

[19]  A. Knoll,et al.  Phase behavior in thin films of cylinder-forming block copolymers. , 2002, Physical review letters.

[20]  Anna C Balazs,et al.  Simulating the morphology and mechanical properties of filled diblock copolymers. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  H. Jaeger,et al.  Local Control of Microdomain Orientation in Diblock Copolymer Thin Films with Electric Fields , 1996, Science.

[22]  Structure development in multi-block copolymerisation: comparison of experiments with cell dynamics simulations , 2000 .

[23]  A. Böker,et al.  3-dimensional control over lamella orientation and order in thick block copolymer films , 2009 .

[24]  Chakrabarti,et al.  Scaling behavior of a model of block copolymers in three dimensions. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[25]  Liu,et al.  Dynamics of phase separation in block copolymer melts. , 1989, Physical review. A, General physics.

[26]  A. Balazs,et al.  Kinetic model of phase separation in binary mixtures with hard mobile impurities. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[27]  I. Pagonabarraga,et al.  Modeling of Block Copolymer/Colloid Hybrid Composite Materials , 2011 .

[28]  Karl R. Amundson,et al.  Alignment of lamellar block copolymer microstructure in an electric field. 1. Alignment kinetics , 1993 .

[29]  A. Lamura,et al.  Spinodal Decomposition of Binary Mixtures in Uniform Shear Flow , 1998 .

[30]  X. Hao,et al.  “Log-Rolling” Alignment in Friction-Transferred Light-Emitting Conjugated Polymer Thin Films , 2010 .

[31]  Yuliang Yang,et al.  Ordering kinetics of block copolymers directed by periodic two-dimensional rectangular fields. , 2011, The Journal of chemical physics.

[32]  A. Romo‐Uribe,et al.  ``Log-Rolling'' Alignment in Main-Chain Thermotropic Liquid Crystalline Polymer Melts under Shear: AnIn-SituWAXS Study , 1996 .

[33]  Takhee Lee,et al.  A Special Issue — Selected Peer-Reviewed Papers from 2006 International Conference on Nanoscience and Nanotechnology, Gwangju, Korea , 2007 .

[34]  Yuliang Yang,et al.  Orientational phase transitions in the hexagonal cylinder phase and kinetic pathways of lamellar phase to hexagonal phase transition of asymmetric diblock copolymers under steady shear flow , 2004 .

[35]  Yuliang Yang,et al.  Microphase separation of diblock copolymer induced by directional quenching , 1997 .

[36]  Puri,et al.  Computationally efficient modeling of ordering of quenched phases. , 1987, Physical review letters.

[37]  A. Yu,et al.  Multiscale modeling and simulation of polymer nanocomposites , 2008 .

[38]  G. Sevink,et al.  Selective disordering of lamella-forming diblock copolymers under an electric field , 2011 .

[39]  H. Yabu,et al.  Unique Phase‐Separation Structures of Block‐Copolymer Nanoparticles , 2005 .

[40]  Natasha M. Maurits,et al.  Three-dimensional simulation of hexagonal phase of a specific polymer system under shear: The dynamic density functional approach , 1998 .

[41]  Richard A. Register,et al.  Shear‐Induced Alignment in Thin Films of Spherical Nanodomains , 2005 .

[42]  T. Hashimoto,et al.  Nano-fabrication of double gyroid network structure via ozonolysis of matrix phase of polyisoprene in poly(2-vinylpyridine)-block-polyisoprene films , 2006 .

[43]  A. Balazs,et al.  Modeling the Dynamic Behavior of Diblock Copolymer/Particle Composites , 2000 .

[44]  P. V. Coveney,et al.  Emergence of rheological properties in lattice Boltzmann simulations of gyroid mesophases , 2006 .

[45]  T. Weiss,et al.  Reversible tuning of a block-copolymer nanostructure via electric fields. , 2008, Nature materials.

[46]  S. Glotzer,et al.  Molecular and Mesoscale Simulation Methods for Polymer Materials , 2002 .

[47]  Masatsugu Shimomura,et al.  Spontaneous formation of polymer nanoparticles by good-solvent evaporation as a nonequilibrium process. , 2005, Chaos.

[48]  Honglai Liu,et al.  Mesophase Separation of Diblock Copolymer Confined in a Cylindrical Tube Studied by Dissipative Particle Dynamics , 2006 .

[49]  M. Schick Avatars of the gyroid , 1998 .

[50]  T. Weiss,et al.  Scaling behavior of the reorientation kinetics of block copolymers exposed to electric fields. , 2007, Soft matter.

[51]  G. Sevink,et al.  Lamellar Alignment of Diblock Copolymers in an Electric Field , 2002 .

[52]  H. Nishiumi,et al.  Corrigendum Corrigendum to "Critical locus and vapor-liquid equilibria of HFC32-HFC125 system" (Fluid Phase Equilib. 194-197 (2002) 995-1008) , 2004 .

[53]  G. Sevink,et al.  Self-Assembly of Complex Vesicles , 2005 .

[54]  Pingwen Zhang,et al.  Numerical simulation of phase separation coupled with crystallization. , 2008, The Journal of chemical physics.

[55]  Karl R. Amundson,et al.  Effect of an electric field on block copolymer microstructure , 1991 .

[56]  Alexander Böker,et al.  Electric field alignment of a block copolymer nanopattern: direct observation of the microscopic mechanism. , 2009, ACS nano.

[57]  Soojin Park,et al.  Macroscopic 10-Terabit–per–Square-Inch Arrays from Block Copolymers with Lateral Order , 2009, Science.

[58]  Haojun Liang,et al.  Influence of electric field on the phase transitions of the hexagonal cylinder phase of diblock copolymers. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[59]  H. Yabu,et al.  Three-dimensional observation of confined phase-separated structures in block copolymer nanoparticles , 2012 .

[60]  Chakrabarti,et al.  Late stages of spinodal decomposition in a three-dimensional model system. , 1989, Physical review. B, Condensed matter.

[61]  E. Ruckenstein,et al.  Morphologies of AB Diblock Copolymer Melts Confined in Nanocylindrical Tubes , 2006 .

[62]  A. Mayes,et al.  Block copolymer thin films : Physics and applications , 2001 .

[63]  T. Russell,et al.  Confined thin film diblock copolymer in the presence of an electric field , 2001 .

[64]  Edwin L. Thomas,et al.  Interplay of symmetries of block polymers and confining geometries , 2011 .

[65]  Ken A. Hawick,et al.  Exploiting graphical processing units for data-parallel scientific applications , 2009 .

[66]  G. Ozin,et al.  Controlling the Morphologies of Organometallic Block Copolymers in the 3-Dimensional Spatial Confinement of Colloidal and Inverse Colloidal Crystals , 2008 .

[67]  T. Russell,et al.  Curving and Frustrating Flatland , 2004, Science.

[68]  Jacob Juhl Christensen,et al.  Pattern dynamics of Rayleigh-Bénard convective rolls and weakly segregated diblock copolymers , 1998, cond-mat/9804034.

[69]  A. Chakrabarti,et al.  Morphology of asymmetric diblock copolymer thin films , 2003 .

[70]  Jongseung Yoon,et al.  Enabling nanotechnology with self assembled block copolymer patterns , 2003 .

[71]  A. Panagiotopoulos,et al.  Log-rolling micelles in sheared amphiphilic thin films. , 2005, Physical review letters.

[72]  Hui-Ji Shi,et al.  Numerical simulation of the phase separation in binary lipid membrane under the effect of stationary shear flow. , 2008, Biophysical chemistry.

[73]  Structural Changes of Diblock Copolymer Melts Due to an External Electric Field: A Self-Consistent-Field Theory Study , 2005, cond-mat/0502624.

[74]  Chakrabarti Kinetics of domain growth and wetting in a model porous medium. , 1992, Physical review letters.

[75]  Filler-induced composition waves in phase-separating polymer blends. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[76]  E. Thomas,et al.  Continuous concentric lamellar block copolymer nanofibers with long range order. , 2009, Nano letters.

[77]  Ian W. Hamley,et al.  Transformations to and from the Gyroid Phase in a Diblock Copolymer , 1998 .

[78]  Natasha M. Maurits,et al.  Three-dimensional mesoscale dynamics of block copolymers under shear: The dynamic density-functional approach , 1998 .

[79]  Feng Qiu,et al.  Phase separation patterns for diblock copolymers on spherical surfaces: a finite volume method. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  A. Chakrabarti,et al.  Block copolymer films on patterned surfaces , 1998 .

[81]  A. Knoll,et al.  The influence of incompatibility and dielectric contrast on the electric field-induced orientation of lamellar block copolymers , 2006 .

[82]  F. Bates,et al.  Epitaxial growth and shearing of the body centered cubic phase in diblock copolymer melts , 1994 .

[83]  A. Chakrabarti,et al.  Block copolymer thin films on corrugated substrates , 2000 .

[84]  Denis Boyer,et al.  Grain boundary pinning and glassy dynamics in stripe phases. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[85]  E. Kramer,et al.  Surface-Induced Asymmetries during Spinodal Decomposition in Off-Critical Polymer Mixtures , 1994 .

[86]  G. Sevink,et al.  Block copolymers confined in a nanopore: pathfinding in a curving and frustrating flatland. , 2007, The Journal of chemical physics.

[87]  Gallagher,et al.  Observed surface energy effects in confined diblock copolymers. , 1996, Physical review letters.

[88]  G. Gonnella,et al.  Steady state of microemulsions in shear flow. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[89]  Qiang Wang,et al.  Symmetric diblock copolymers in nanopores: Monte Carlo simulations and strong-stretching theory. , 2007, The Journal of chemical physics.

[90]  A. Panagiotopoulos,et al.  Ultra thin films of diblock copolymers under shear , 2010 .

[91]  Xiaohu Guo,et al.  Parallel algorithm for cell dynamics simulation of block copolymers , 2007 .

[92]  Mechanisms of electric-field-induced alignment of block copolymer lamellae , 2009 .

[93]  Pingwen Zhang,et al.  An efficient numerical method of Landau-Brazovskii model , 2008, J. Comput. Phys..

[94]  Kurt Binder,et al.  Simulation of surface-controlled phase separation in slit pores: Diffusive Ginzburg-Landau kinetics versus Molecular Dynamics , 2008, Comput. Phys. Commun..

[95]  Zhen‐Gang Wang,et al.  KINETICS OF PHASE TRANSITIONS IN WEAKLY SEGREGATED BLOCK COPOLYMERS : PSEUDOSTABLE AND TRANSIENT STATES , 1997 .

[96]  A. Balazs,et al.  Predicting the Mesophases of Copolymer-Nanoparticle Composites , 2001, Science.

[97]  H. Yabu,et al.  Spontaneous formation of polymernanoparticles with inner micro-phase separation structures. , 2008, Soft matter.

[98]  Chakrabarti,et al.  Late-stage coarsening for off-critical quenches: Scaling functions and the growth law. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[99]  M. Matsen Thin films of block copolymer , 1997 .

[100]  Peter V Coveney,et al.  Stress response and structural transitions in sheared gyroidal and lamellar amphiphilic mesophases: Lattice-Boltzmann simulations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[101]  G. Sevink,et al.  Sphere morphology of block copolymer systems under shear , 2003 .

[102]  A. Knoll,et al.  Microscopic mechanisms of electric-field-induced alignment of block copolymer microdomains. , 2002, Physical review letters.

[103]  Shinichi Sakurai,et al.  Progress in control of microdomain orientation in block copolymers – Efficiencies of various external fields , 2008 .

[104]  E. Shakhnovich,et al.  Phase separation of a binary fluid containing surfactants in a Hele-Shaw cell , 1999 .

[105]  M. Doi,et al.  Anomalous rheological behavior of ordered phases of block copolymers. 1 , 1993 .

[106]  R. Register,et al.  Controlling order in block copolymer thin films for nanopatterning applications. , 2010, Annual review of chemical and biomolecular engineering.

[107]  Takao Ohta,et al.  Interface between Lamellar and Gyroid Structures in Diblock Copolymer Melts(Cross-disciplinary physics and related areas of science and technology) , 2007 .

[108]  Marco Pinna,et al.  Diblock copolymers in a cylindrical pore. , 2009, The Journal of chemical physics.

[109]  Feng Qiu,et al.  Multi-Scale Model for Binary Mixtures Containing Nanoscopic Particles , 2000 .

[110]  Kristin Schmidt,et al.  Influence of initial order on the microscopic mechanism of electric field induced alignment of block copolymer microdomains. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[111]  Ian W. Hamley,et al.  Cell Dynamics Simulations of Microphase Separation in Block Copolymers , 2001 .

[112]  F. Caruso,et al.  Ultrathin, responsive polymer click capsules. , 2007, Nano letters.

[113]  Ohta,et al.  Dynamics of phase separation in copolymer-homopolymer mixtures. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[114]  A. Böker,et al.  Electric Field Induced Gyroid-to-Cylinder Transitions in Concentrated Diblock Copolymer Solutions , 2010 .

[115]  E. Ruckenstein,et al.  Long-range ordered structures in diblock copolymer melts induced by combined external fields. , 2004, The Journal of chemical physics.

[116]  G. Sevink,et al.  Surface-Induced Transitions in Thin Films of Asymmetric Diblock Copolymers , 2001 .

[117]  K. Kawasaki,et al.  Late Stage Dynamics of Phase Separation Processes of Binary Mixtures Containing Surfactants , 1993 .

[118]  G. Sevink,et al.  Morphology of symmetric block copolymer in a cylindrical pore , 2001 .

[119]  Two-Scale Competition in Phase Separation with Shear , 1999, cond-mat/9904423.

[120]  Honglai Liu,et al.  Asymmetric diblock copolymer thin film confined in a slit: Microphase separation and morphology , 2002 .

[121]  A. Böker,et al.  Large‐Scale Oriented Assembly of Nanoparticles in Diblock Copolymer Templates under Electric Fields , 2009 .

[122]  Yu-qiang Ma,et al.  Phase separations in a copolymer–copolymer mixture , 2006 .

[123]  A. Zvelindovsky,et al.  Block copolymer nanoshells , 2008 .

[124]  A. Balazs,et al.  Simulation of Hard Particles in a Phase-Separating Binary Mixture , 1999, cond-mat/9905284.

[125]  G. Fredrickson Steady shear alignment of block copolymers near the isotropic–lamellar transition , 1994 .

[126]  G. Brinke,et al.  Thin films of complexed block copolymers , 2009 .

[127]  G. Sevink,et al.  Mesoscale modeling of block copolymer nanocomposites , 2012 .

[128]  Marco Pinna,et al.  Kinetic pathways of gyroid-to-cylinder transitions in diblock copolymers under external fields: cell dynamics simulation. , 2008, Soft matter.

[129]  Baohui Li,et al.  Phase behavior of binary blends of diblock copolymer/homopolymer confined in spherical nanopores. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[130]  L. An,et al.  Simulated morphological landscape of polymer single crystals by phase field model. , 2008, The Journal of chemical physics.

[131]  Francesco Stellacci,et al.  Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles , 2004, Nature materials.

[132]  Xiang-fa Wu,et al.  Phase-field modeling of the formation of lamellar nanostructures in diblock copolymer thin films under inplanar electric fields. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[133]  Y. Dzenis,et al.  Guided self-assembly of diblock copolymer thin films on chemically patterned substrates. , 2006, The Journal of chemical physics.

[134]  A. Knoll,et al.  Electric Field Induced Alignment of Concentrated Block Copolymer Solutions , 2003 .

[135]  G. Sevink,et al.  Model for pattern formation in polymer surfactant nanodroplets , 2003 .

[136]  A. Knoll,et al.  Large Scale Domain Alignment of a Block Copolymer from Solution Using Electric Fields , 2002 .

[137]  T. Hashimoto,et al.  Incorporation of Metal Nanoparticles into a Double Gyroid Network Texture , 2006 .

[138]  Corberi,et al.  Structure and rheology of binary mixtures in shear flow , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[139]  Yiying Wu,et al.  Composite mesostructures by nano-confinement , 2004, Nature materials.

[140]  Hiroya Kodama,et al.  TWO-ORDER-PARAMETER MODEL FOR AN OIL-WATER-SURFACTANT SYSTEM , 1997 .

[141]  G. Sevink,et al.  Nanopattern Evolution in Block Copolymer Films: Experiment, Simulations and Challenges , 2010 .

[142]  Morozov,et al.  Orientational phase transitions in the hexagonal phase of a diblock copolymer melt under shear flow , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[143]  Kyozi Kawasaki,et al.  Hybrid models for the dynamics of an immiscible binary mixture with surfactant molecules , 1990 .

[144]  Qi,et al.  Kinetic pathways of order-disorder and order-order transitions in weakly segregated microstructured systems. , 1996, Physical review letters.

[145]  Yiming Sun,et al.  Diameter‐Dependence of the Morphology of PS‐b‐PMMA Nanorods Confined Within Ordered Porous Alumina Templates , 2005 .

[146]  K. Kawasaki,et al.  Equilibrium morphology of block copolymer melts , 1986 .

[147]  K. Binder,et al.  Phase Separation in Confined Geometries , 2010 .

[148]  H. Yabu,et al.  Hemispherical polymer nano-particles of polyisoprene–poly(methyl methacrylate) blend with core–shell structure , 2008 .

[149]  Heesook Cho,et al.  Supramolecular assembly of end-functionalized polymer mixtures confined in nanospheres. , 2011, ACS nano.

[150]  G. Sevink,et al.  Asymmetric block copolymers confined in a thin film , 2000 .

[151]  G. Fredrickson,et al.  Self-consistent field theory for diblock copolymers grafted to a sphere , 2011 .

[152]  Yuliang Yang,et al.  Chain stretching effect on the morphology and kinetics of microphase separation of diblock copolymer under simple shear flow , 2001 .

[153]  L. Leibler Theory of Microphase Separation in Block Copolymers , 1980 .

[154]  A. Chakrabarti,et al.  Ordering of block copolymer melts in confined geometry , 1995 .

[155]  A. Böker,et al.  Block copolymer nanocontainers. , 2010, ACS nano.

[156]  Weihua Li,et al.  Self-Assembled Morphologies of a Diblock Copolymer Melt Confined in a Cylindrical Nanopore , 2006 .

[157]  M. Matsen Cylinder↔sphere epitaxial transitions in block copolymer melts , 2001 .

[158]  A. Zvelindovsky,et al.  Diblock copolymer sphere morphology in ultra thin films under shear , 2011 .

[159]  I. Hamley Cell dynamics simulations of block copolymers , 2000 .

[160]  L. Bonilla,et al.  Edge dislocations in crystal structures considered as traveling waves in discrete models. , 2003, Physical review letters.

[161]  I. Hamley,et al.  Mesoscopic simulations of lamellar orientation in block copolymers , 2002 .

[162]  Puri,et al.  Study of phase-separation dynamics by use of cell dynamical systems. II. Two-dimensional demonstrations. , 1988, Physical review. A, General physics.

[163]  Masao Doi,et al.  Shear-Induced Instability of the Lamellar Phase of a Block Copolymer , 1996 .

[164]  P. Olmsted,et al.  Cell dynamics simulations of shear-induced alignment and defect annihilation in stripe patterns formed by block copolymers. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[165]  P. Chaikin,et al.  Alignment of perpendicular lamellae in block copolymer thin films by shearing , 2012 .

[166]  Takashi Uneyama,et al.  Density functional simulation of spontaneous formation of vesicle in block copolymer solutions. , 2007, The Journal of chemical physics.

[167]  A. Böker,et al.  Large scale alignment of a lamellar block copolymer thin film via electric fields: a time-resolved SFM study. , 2006, Soft matter.

[168]  Oono,et al.  Cell dynamical system approach to block copolymers. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[169]  Grant,et al.  Stochastic eutectic growth. , 1994, Physical review letters.

[170]  Y. Shiwa,et al.  LETTER TO THE EDITOR: Noise-enhanced domain coarsening in ordering dynamics of lamellar patterns , 1999 .

[171]  M. Matsen Undulation instability in block-copolymer lamellae subjected to a perpendicular electric field. , 2006, Soft matter.

[172]  R. Segalman Patterning with block copolymer thin films , 2005 .

[173]  T. Kawakatsu Epitaxial Transition from Gyroid to Cylinder in a Diblock Copolymer Melt , 2005, cond-mat/0510032.

[174]  Takao Ohta,et al.  Kinetics of morphological transitions in microphase-separated diblock copolymers , 2004 .

[175]  Gregory Brown,et al.  Surface‐induced ordering in block copolymer melts , 1994 .

[176]  Juan J. de Pablo,et al.  Monte Carlo Simulations of Asymmetric Diblock Copolymer Thin Films Confined between Two Homogeneous Surfaces , 2001 .

[177]  Xuehao He,et al.  Effect of surface field on the morphology of a symmetric diblock copolymer under cylindrical confinement. , 2006, The Journal of chemical physics.

[178]  Feng Qiu,et al.  Ordering Dynamics of Directed Self-Assembly of Block Copolymers in Periodic Two-Dimensional Fields , 2010 .

[179]  Motion of a transverse/parallel grain boundary in a block copolymer under oscillatory shear flow , 2003, cond-mat/0301446.

[180]  Hybrid Dynamic Density Functional Theory for Polymer Melts and Blends , 2006, cond-mat/0609081.

[181]  K. Kawasaki,et al.  Continuum theory of an immiscible binary fluid mixture with a surfactant , 1990 .

[182]  Marko Influence of surface interactions on spinodal decomposition. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[183]  Y. Oono,et al.  Spinodal decomposition in 3-space. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[184]  Héctor D. Ceniceros,et al.  Self-consistent field theory simulations of block copolymer assembly on a sphere. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[185]  Kyozi Kawasaki,et al.  Theories and computer simulations of self-assembling surfactant solutions , 1994 .

[186]  A. Knoll,et al.  Direct imaging and mesoscale modelling of phase transitions in a nanostructured fluid , 2004, Nature materials.

[187]  J. Pople,et al.  EFFECT OF SHEAR ON CUBIC PHASES IN GELS OF A DIBLOCK COPOLYMER , 1998 .

[188]  Augustine Urbas,et al.  Tunable Block Copolymer/Homopolymer Photonic Crystals , 2000 .

[189]  B. Ocko,et al.  Electric Field Induced Sphere-to-Cylinder Transition in Diblock Copolymer Thin Films , 2004 .

[190]  Y. Shiwa,et al.  Hydrodynamic interactions in ordering process of two-dimensional quenched block copolymers. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[191]  Chakrabarti,et al.  Surface-directed spinodal decomposition in a two-dimensional model. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[192]  A. Balazs,et al.  Three-dimensional simulations of diblock copolymer/particle composites☆ , 2002 .

[193]  T. Ohta,et al.  Metastable and unstable structures in microphase separated diblock copolymers , 2005 .

[194]  D. A. Vega,et al.  Ordering mechanisms in two-dimensional sphere-forming block copolymers. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[195]  T. Ohta,et al.  Formation and stability of double gyroid in microphase-separated diblock copolymers , 2003 .