An advanced regularization methodology for use in watershed model calibration
暂无分享,去创建一个
[1] S. Constable,et al. Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data , 1990 .
[2] K. Mitchell,et al. Simple water balance model for estimating runoff at different spatial and temporal scales , 1996 .
[3] J. Doherty,et al. A hybrid regularized inversion methodology for highly parameterized environmental models , 2005 .
[4] Clifford H. Thurber,et al. Parameter estimation and inverse problems , 2005 .
[5] Eldad Haber,et al. Numerical strategies for the solution of inverse problems , 1997 .
[6] G. Kuczera. Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty , 1983 .
[7] Soroosh Sorooshian,et al. Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods , 2000 .
[8] A. N. Tikhonov,et al. Solutions of ill-posed problems , 1977 .
[9] Peter A. Troch,et al. Tikhonov regularization as a tool for assimilating soil moisture data in distributed hydrological models , 2002 .
[10] G. Marsily,et al. An Automatic Solution for the Inverse Problem , 1971 .
[11] G Bruckner,et al. An inverse problem from 2D ground-water modelling , 1998 .
[12] J. Doherty,et al. METHODOLOGIES FOR CALIBRATION AND PREDICTIVE ANALYSIS OF A WATERSHED MODEL 1 , 2003 .
[13] Samuel D. Conte,et al. Elementary Numerical Analysis , 1980 .
[14] Gwilym M. Jenkins,et al. Time series analysis, forecasting and control , 1972 .
[15] R. Parker,et al. Occam's inversion; a practical algorithm for generating smooth models from electromagnetic sounding data , 1987 .
[16] Michael S. Zhdanov,et al. Focusing geophysical inversion images , 1999 .
[17] Richard B. McCammon,et al. Users manual for an expert system (HSPEXP) for calibration of the hydrological simulation program; Fortran , 1994 .
[18] Box Ge,et al. Time series analysis: forecasting and control rev. ed. , 1976 .
[19] D. Cox,et al. An Analysis of Transformations , 1964 .
[20] J. Doherty,et al. The cost of uniqueness in groundwater model calibration , 2006 .
[21] T. Skaggs,et al. Recovering the release history of a groundwater contaminant , 1994 .
[22] S. Sorooshian,et al. Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .
[23] V. O. Shanholtz,et al. Estimating selected parameters for the Kentucky Watershed Model from watershed characteristics , 1976 .
[24] H. Engl,et al. Regularization of Inverse Problems , 1996 .
[25] William M. Alley,et al. Effective Impervious Area in Urban Runoff Modeling , 1983 .
[26] J. Doherty,et al. Role of the calibration process in reducing model predictive error , 2005 .
[27] B. Bates,et al. Regionalization of rainfall‐runoff model parameters using Markov Chain Monte Carlo samples , 2001 .
[28] E. Haber,et al. On optimization techniques for solving nonlinear inverse problems , 2000 .
[29] Henrik Madsen,et al. Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. , 2000 .
[30] W. Menke. Geophysical data analysis : discrete inverse theory , 1984 .
[31] B. Bates,et al. A Markov Chain Monte Carlo Scheme for parameter estimation and inference in conceptual rainfall‐runoff modeling , 2001 .
[32] George E. P. Box,et al. Time Series Analysis: Forecasting and Control , 1977 .
[33] John Doherty,et al. Ground Water Model Calibration Using Pilot Points and Regularization , 2003, Ground water.
[34] G. Backus,et al. Numerical Applications of a Formalism for Geophysical Inverse Problems , 1967 .
[35] S. Kazama,et al. Regionalization of lumped water balance model parameters based on multiple regression , 2001 .