A Sequential Subspace Projection Method for Linear Symmetric Eigenvalue Problem
暂无分享,去创建一个
Xin Liu | Chunlin Hao | Minghou Cheng | Xin Liu | C. Hao | Minghou Cheng
[1] G. Golub,et al. Eigenvalue computation in the 20th century , 2000 .
[2] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[3] JAMES DEMMEL,et al. LAPACK: A portable linear algebra library for high-performance computers , 1990, Proceedings SUPERCOMPUTING '90.
[4] Yu-Hong Dai,et al. Fast Algorithms for Projection on an Ellipsoid , 2006, SIAM J. Optim..
[5] Lothar Reichel,et al. IRBL: An Implicitly Restarted Block-Lanczos Method for Large-Scale Hermitian Eigenproblems , 2002, SIAM J. Sci. Comput..
[6] Yunkai Zhou. Eigenvalue Computation from the Optimization Perspective: On Jacobi-Davidson, IIGD, RQI, and Newton Updates , 2004 .
[7] Ya-Xiang Yuan,et al. Subspace Techniques for Nonlinear Optimization , 2007 .
[8] Chao Yang,et al. ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.
[9] Y Saad,et al. Numerical methods for large eigenvalue problems : theory and algorithms , 1992 .
[10] Timothy A. Davis,et al. The university of Florida sparse matrix collection , 2011, TOMS.
[11] Z. Jia,et al. Refined iterative algorithms based on Arnoldi's process for large unsymmetric eigenproblems , 1997 .
[12] Yvan Notay,et al. Combination of Jacobi–Davidson and conjugate gradients for the partial symmetric eigenproblem , 2002, Numer. Linear Algebra Appl..