Introduction to Stochastic Geometry

This chapter introduces some of the fundamental notions from stochastic geometry. Background information from convex geometry is provided as far as this is required for the applications to stochastic geometry.

[1]  Piet Groeneboom,et al.  Limit theorems for functionals of convex hulls , 1994 .

[2]  Matthias Reitzner,et al.  Beyond the Efron–Buchta Identities: Distributional Results for Poisson Polytopes , 2014, Discret. Comput. Geom..

[3]  Asymptotic Shapes of large Cells in Random Tessellations , 2007 .

[4]  Faces with given directions in anisotropic Poisson hyperplane mosaics , 2011 .

[5]  Daniel Hug,et al.  Stability of the reverse Blaschke-Santaló inequality for zonoids and applications , 2010, Adv. Appl. Math..

[6]  M. Reitzner,et al.  Central limit theorems for $U$-statistics of Poisson point processes , 2011, 1104.1039.

[7]  Tailen Hsing On the Asymptotic Distribution of the Area Outside a Random Convex Hull in a Disk , 1994 .

[8]  H. Poincaré,et al.  Percolation ? , 1982 .

[9]  M. Penrose,et al.  Poisson process Fock space representation, chaos expansion and covariance inequalities , 2009, 0909.3205.

[10]  Rolf Schneider,et al.  Discrete Aspects of Stochastic Geometry , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[11]  Piet Groeneboom,et al.  Limit theorems for convex hulls , 1988 .

[12]  Daniel Hug,et al.  Expectation of intrinsic volumes of random polytopes , 2008, Period. Math. Hung..

[13]  H. Groemer,et al.  ON THE EXTENSION OF ADDITIVE FUNCTIONALS ON CLASSES OF CONVEX SETS , 1978 .

[14]  J. Einmahl,et al.  The two-sample problem in $\Bbb R\sp m$ and measure-valued martingales , 2001 .

[15]  J. Pardon Central Limit Theorems for Uniform Model Random Polygons , 2011, 1110.5656.

[16]  M. Reitzner,et al.  U-Statistics in Stochastic Geometry , 2015, 1503.00110.

[17]  W. Weil,et al.  Stochastic and Integral Geometry , 2008 .

[18]  LARGE TYPICAL CELLS IN POISSON–DELAUNAY MOSAICS DANIEL HUG and ROLF SCHNEIDER Dedicated to Tudor Zamfirescu on the occasion of his sixtieth birthday , 2005 .

[19]  Martin Haenggi,et al.  Stochastic Geometry for Wireless Networks , 2012 .

[20]  M. Voit CENTRAL LIMIT THEOREMS FOR A CLASS OF , 1990 .

[21]  Rolf Schneider,et al.  Classical Stochastic Geometry , 2009 .

[22]  E. Khmaladze,et al.  On the almost sure coverage property of Voronoi tessellation: the ℝ1 case , 2001, Advances in Applied Probability.

[23]  H. Groemer,et al.  On some mean values associated with a randomly selected simplex in a convex set. , 1973 .

[24]  Rolf Schneider Approximation of convex bodies by random polytopes , 1987 .

[25]  Matthias Schulte A central limit theorem for the Poisson-Voronoi approximation , 2012, Adv. Appl. Math..

[26]  New Kolmogorov bounds for functionals of binomial point processes , 2015, 1505.04640.

[27]  Matthias Schulte,et al.  The scaling limit of Poisson-driven order statistics with applications in geometric probability , 2012, 1201.5282.

[28]  Matthias Reitzner,et al.  Random polytopes and the Efron--Stein jackknife inequality , 2003 .

[29]  G. Last Stochastic analysis for Poisson processes , 2014, 1405.4416.

[30]  Kasra Alishahi,et al.  Volume degeneracy of the typical cell and the chord length distribution for Poisson-Voronoi tessellations in high dimensions , 2008, Advances in Applied Probability.

[31]  David G. Larman,et al.  Volumes of a Random Polytope in a Convex Set , 1990, Applied Geometry And Discrete Mathematics.

[32]  R. Lachièze-Rey,et al.  Fine Gaussian fluctuations on the Poisson space, I: contractions, cumulants and geometric random graphs , 2011, 1111.7312.

[33]  Igor N. Kovalenko,et al.  Proof of David Kendall’s conjecture concerning the shape of large random polygons , 1997 .

[34]  J. Yukich,et al.  Brownian limits, local limits and variance asymptotics for convex hulls in the ball , 2009, 0912.4339.

[35]  G. Last,et al.  Some distributional results for Poisson-Voronoi tessellations , 2007, Advances in Applied Probability.

[36]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[37]  V. Milman,et al.  Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space , 1989 .

[38]  A. Giannopoulos On the mean value of the area of a random polygon in a plane convex body , 1992 .

[39]  C. Buchta,et al.  Stochastische Approximation konvexer Polygone , 1984 .

[40]  Daniel Hug Random Mosaics , 2004 .

[41]  J. Yukich,et al.  Asymptotic theory for statistics of the Poisson-Voronoi approximation , 2015, 1503.08963.

[42]  G. Peccati,et al.  Multi-Dimensional Gaussian Fluctuations on the Poisson Space , 2010, 1004.2175.

[43]  M. Reitzner,et al.  Poisson-Voronoi approximation. , 2009, 0906.4238.

[44]  G. Last,et al.  Gamma distributions for stationary Poisson flat processes , 2009, Advances in Applied Probability.

[45]  Klaus Mecke,et al.  Topological estimation of percolation thresholds , 2007, 0708.3251.

[46]  Rolf Schneider Vertex Numbers of Weighted Faces in Poisson Hyperplane Mosaics , 2010, Discret. Comput. Geom..

[47]  A. Rényi,et al.  über die konvexe Hülle von n zufÄllig gewÄhlten Punkten. II , 1964 .

[48]  Murad S. Taqqu,et al.  Stein’s method and Normal approximation of Poisson functionals , 2008, 0807.5035.

[49]  G. Peccati,et al.  Portmanteau inequalities on the Poisson space: mixed regimes and multidimensional clustering , 2012, 1209.3098.

[50]  G. Last,et al.  Second-order properties and central limit theorems for geometric functionals of Boolean models , 2013, 1308.6519.

[51]  Van Vu,et al.  Sharp concentration of random polytopes , 2005 .

[52]  Matthias Reitzner,et al.  Limit theory for the Gilbert graph , 2013, Adv. Appl. Math..

[53]  Rolf Schneider A Duality for Poisson Flats , 1999, Advances in Applied Probability.

[54]  Christian Buchta,et al.  Random polytopes in a convex polytope, independence of shape, and concentration of vertices , 1993 .

[55]  H. Groemer,et al.  On the mean value of the volume of a random polytope in a convex set , 1974 .

[56]  J. Einmahl,et al.  The two-sample problem in Rm and measure-valued martingales , 1998 .

[57]  I. Bárány,et al.  On the variance of random polytopes , 2010 .

[58]  W. Weil,et al.  Intersection and proximity of processes of flats , 2014, 1406.3999.

[59]  J. Yukich,et al.  Variance asymptotics for random polytopes in smooth convex bodies , 2012, 1206.4975.

[60]  Matthias Reitzner,et al.  Stochastical approximation of smooth convex bodies , 2004 .

[61]  A. Goldman Sur une conjecture de D.G. Kendall concernant la cellule de Crofton du plan et sur sa contrepartie brownienne , 1998 .

[62]  Béla Bollobás,et al.  The critical probability for random Voronoi percolation in the plane is 1/2 , 2006 .

[63]  Nicolas Chenavier A general study of extremes of stationary tessellations with applications , 2013, 1310.5675.

[64]  M. Penrose Laws of large numbers in stochastic geometry with statistical applications , 2007, 0711.4486.

[65]  Intrinsic volumes of inscribed random polytopes in smooth convex bodies , 2009, Advances in Applied Probability.

[66]  R. Schneider,et al.  Approximation Properties of Random Polytopes Associated with Poisson Hyperplane Processes , 2013, Advances in Applied Probability.

[67]  Mathew D. Penrose,et al.  Random Geometric Graphs , 2003 .

[68]  Bartlomiej Blaszczyszyn,et al.  On Comparison of Clustering Properties of Point Processes , 2011, Advances in Applied Probability.

[69]  M. Penrose,et al.  Moments and Central Limit Theorems for Some Multivariate Poisson Functionals , 2012, Advances in Applied Probability.

[70]  Hugues Randriam,et al.  Simplicial Homology of Random Configurations , 2011, Advances in Applied Probability.

[71]  Matthew Kahle Topology of random simplicial complexes: a survey , 2013, 1301.7165.

[72]  Sergei Zuyev,et al.  Stochastic Geometry and Telecommunications Networks , 2009 .

[73]  Matthias Reitzner,et al.  Central limit theorems for random polytopes , 2005 .

[74]  Imre B'ar'any,et al.  Poisson polytopes , 2010, 1010.3582.

[75]  V. Schmidt,et al.  Limit theorems for stationary tessellations with random inner cell structures , 2005, Advances in Applied Probability.

[76]  Nicolas Chenavier A general study of extremes of stationary tessellations with examples , 2014 .

[77]  Mini-Workshop: Stochastic Analysis for Poisson Point Processes: Malliavin Calculus, Wiener-Ito Chaos Expansions and Stochastic Geometry , 2013 .

[78]  Elizabeth S. Meckes,et al.  Limit theorems for Betti numbers of random simplicial complexes , 2010 .

[79]  R. Lachièze-Rey,et al.  Boundary density and Voronoi set estimation for irregular sets , 2015, 1501.04724.

[80]  R. E. Miles A heuristic proof of a long-standing conjecture of D. G. Kendall concerning the shapes of certain large random polygons , 1995, Advances in Applied Probability.

[81]  Daniel Hug,et al.  Typical Cells in Poisson Hyperplane Tessellations , 2007, Discret. Comput. Geom..

[82]  Rolf Schneider,et al.  Weighted faces of Poisson hyperplane tessellations , 2009, Advances in Applied Probability.

[83]  B. Efron The convex hull of a random set of points , 1965 .

[84]  Luis Rademacher On the monotonicity of the expected volume of a random simplex , 2010, 1008.3944.

[85]  Matthias Schulte,et al.  Distances Between Poisson k-Flats , 2012, 1206.4807.

[86]  J. Yukich Surface order scaling in stochastic geometry , 2013, 1312.6595.

[87]  I. Bárány Random polytopes in smooth convex bodies , 1992 .

[88]  Carsten Schütt,et al.  Random Polytopes and Affine Surface Area , 1993 .

[89]  D. Zaporozhets,et al.  Set Reconstruction by Voronoi Cells , 2011, Advances in Applied Probability.

[90]  R. Lachièze-Rey,et al.  Fine Gaussian fluctuations on the Poisson space II: rescaled kernels, marked processes and geometric U-statistics , 2012, 1205.0632.

[91]  Igor N. Kovalenko,et al.  A simplified proof of a conjecture of D. G. Kendall concerning shapes of random polygons , 1999 .

[92]  Daniel Hug,et al.  Large Poisson-Voronoi cells and Crofton cells , 2004, Advances in Applied Probability.

[93]  D. Hug,et al.  On the Volume of the Zero Cell of a Class of Isotropic Poisson Hyperplane Tessellations , 2012, Advances in Applied Probability.

[94]  Central limit theorems for random polygons in an arbitrary convex set , 2010, 1003.4209.

[95]  Pierre Calka,et al.  The distributions of the smallest disks containing the Poisson-Voronoi typical cell and the Crofton cell in the plane , 2002, Advances in Applied Probability.

[96]  D. Hug,et al.  Poisson polyhedra in high dimensions , 2014, 1403.8017.

[97]  Xavier Goaoc,et al.  The monotonicity of f-vectors of random polytopes , 2012, ArXiv.

[98]  Daniel Hug,et al.  The limit shape of the zero cell in a stationary Poisson hyperplane tessellation , 2004 .

[99]  C. Redenbach,et al.  Asymptotic shape of small cells , 2012, 1211.5488.

[100]  S. Graf,et al.  Foundations of Quantization for Probability Distributions , 2000 .

[101]  P. Calka,et al.  Extreme values for characteristic radii of a Poisson-Voronoi Tessellation , 2013, 1304.0170.

[102]  A. Rényi,et al.  über die konvexe Hülle von n zufällig gewählten Punkten , 1963 .

[103]  Large faces in Poisson hyperplane mosaics , 2010, 1010.2333.

[104]  G. Peccati,et al.  The Malliavin–Stein Method on the Poisson Space , 2016 .

[105]  Percolation on stationary tessellations: models, mean values, and second-order structure , 2014, Journal of Applied Probability.

[106]  Imre Bárány,et al.  Random polytopes , 2006 .

[107]  L. Heinrich LARGE DEVIATIONS OF THE EMPIRICAL VOLUME FRACTION FOR STATIONARY POISSON GRAIN MODELS , 2005, math/0503479.

[108]  Tomasz Schreiber,et al.  Limit theorems for the typical poisson-voronoi cell and the crofton cell with a large inradius , 2005, math/0507463.

[109]  Extremal Properties of Random Mosaics , 2013 .

[110]  R. Schneider Second moments related to Poisson hyperplane tessellations , 2015, 1504.00571.

[111]  Rolf Schneider,et al.  Random polytopes in a convex body , 1980 .

[112]  Matthew Kahle,et al.  Random Geometric Complexes , 2009, Discret. Comput. Geom..

[113]  Tomasz Schreiber,et al.  Large deviation probabilities for the number of vertices of random polytopes in the ball , 2006, Advances in Applied Probability.

[114]  János Pach,et al.  Geometry : intuitive, discrete, and convex : a tribute to László Fejes Tóth , 2013 .

[115]  Günter Last,et al.  Percolation on stationary tessellations: models, mean values, and second-order structure , 2014, J. Appl. Probab..

[116]  Matthias Reitzner,et al.  The combinatorial structure of random polytopes , 2005 .