A computational approach to the structural analysis of uncertain kinetic systems

Abstract A computation-oriented representation of uncertain kinetic systems is introduced and analysed in this paper. It is assumed that the monomial coefficients of the ODEs belong to a polytopic set, which defines a set of dynamical systems for an uncertain model. An optimization-based computation model is proposed for the structural analysis of uncertain models. It is shown that the so-called dense realization containing the maximal number of reactions (directed edges) is computable in polynomial time, and it forms a superstructure among all the possible reaction graphs corresponding to an uncertain kinetic model, assuming a fixed set of complexes. The set of core reactions present in all reaction graphs of an uncertain model is also studied. Most importantly, an algorithm is proposed to compute all possible reaction graph structures for an uncertain kinetic model.

[1]  Mikael Sunnåker,et al.  Efficient Characterization of Parametric Uncertainty of Complex (Bio)chemical Networks , 2015, PLoS Comput. Biol..

[2]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[3]  Seth Sullivant,et al.  Identifiable reparametrizations of linear compartment models , 2013, J. Symb. Comput..

[4]  M. Feinberg,et al.  Structural Sources of Robustness in Biochemical Reaction Networks , 2010, Science.

[5]  G. Szederkényi Computing sparse and dense realizations of reaction kinetic systems , 2010 .

[6]  G. Szederkényi,et al.  Finding complex balanced and detailed balanced realizations of chemical reaction networks , 2010, 1010.4477.

[7]  Jenq-Lang Wu,et al.  Robust Stabilization for Single-Input Polytopic Nonlinear Systems , 2004, IEEE Transactions on Automatic Control.

[8]  G. Harrison,et al.  Compartmental models with uncertain flow rates , 1979 .

[9]  William Briggs,et al.  Uncertainty: The Soul of Modeling, Probability & Statistics , 2016 .

[10]  Eduardo D. Sontag Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction , 2001, IEEE Trans. Autom. Control..

[11]  F. Llaneras,et al.  An interval approach for dealing with flux distributions and elementary modes activity patterns. , 2007, Journal of theoretical biology.

[12]  Eric Walter,et al.  On the identifiability and distinguishability of nonlinear parametric models , 1996 .

[13]  Gábor Szederkényi,et al.  Computing zero deficiency realizations of kinetic systems , 2015, Syst. Control. Lett..

[14]  Benjamin Weitz,et al.  An inverse problem in reaction kinetics , 2011 .

[15]  Katalin M. Hangos,et al.  Maximal and minimal realizations of reaction kinetic systems: computation and properties , 2010, 1005.2913.

[16]  M. Feinberg Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems , 1987 .

[17]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[18]  Gábor Szederkényi,et al.  Computing core reactions of uncertain polynomial kinetic systems , 2015, 2015 23rd Mediterranean Conference on Control and Automation (MED).

[19]  Santiago Schnell,et al.  The mechanism distinguishability problem in biochemical kinetics: the single-enzyme, single-substrate reaction as a case study. , 2006, Comptes rendus biologies.

[20]  Gheorghe Craciun,et al.  Identifiability of chemical reaction networks , 2008 .

[21]  Lennart Ljung,et al.  On global identifiability for arbitrary model parametrizations , 1994, Autom..

[22]  Matthew D. Johnston,et al.  Linear conjugacy of chemical reaction networks , 2011, 1101.1663.

[23]  H. Lodish Molecular Cell Biology , 1986 .

[24]  E. Klipp,et al.  Biochemical networks with uncertain parameters. , 2005, Systems biology.

[25]  Gábor Szederkényi,et al.  Computing weakly reversible linearly conjugate chemical reaction networks with minimal deficiency. , 2012, Mathematical biosciences.

[26]  Nicolette Meshkat,et al.  On Finding and Using Identifiable Parameter Combinations in Nonlinear Dynamic Systems Biology Models and COMBOS: A Novel Web Implementation , 2014, PloS one.

[27]  Nicolette Meshkat,et al.  An algorithm for finding globally identifiable parameter combinations of nonlinear ODE models using Gröbner Bases. , 2009, Mathematical biosciences.

[28]  Y. Takeuchi Global Dynamical Properties of Lotka-Volterra Systems , 1996 .

[29]  M. Tavazoei,et al.  On Stability and Trajectory Boundedness of Lotka–Volterra Systems With Polytopic Uncertainty , 2017, IEEE Transactions on Automatic Control.

[30]  William W. Chen,et al.  Classic and contemporary approaches to modeling biochemical reactions. , 2010, Genes & development.

[31]  Zsolt Tuza,et al.  Computing all possible graph structures describing linearly conjugate realizations of kinetic systems , 2016, Comput. Phys. Commun..

[32]  Alexander Weinmann Uncertain Models and Robust Control , 2002 .

[33]  Péter Érdi,et al.  Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models , 1989 .

[34]  S. Bhat,et al.  Modeling and analysis of mass-action kinetics , 2009, IEEE Control Systems.

[35]  Matthew D. Johnston,et al.  Dynamical Equivalence and Linear Conjugacy of Chemical Reaction Networks: New Results and Methods , 2011, 1111.1441.

[36]  Gábor Szederkényi,et al.  A linear programming approach to weak reversibility and linear conjugacy of chemical reaction networks , 2011, Journal of Mathematical Chemistry.

[37]  Alexandre Sedoglavic A Probabilistic Algorithm to Test Local Algebraic Observability in Polynomial Time , 2002, J. Symb. Comput..

[38]  Tamás Turányi,et al.  Uncertainty of Arrhenius parameters , 2011 .

[39]  Zsolt Tuza,et al.  Computing linearly conjugate weakly reversible kinetic structures using optimization and graph theory , 2015 .

[40]  R. Jackson,et al.  General mass action kinetics , 1972 .

[41]  Gábor Szederkényi,et al.  A new efficient algorithm for determining all structurally different realizations of kinetic systems , 2017 .

[42]  Eva Balsa-Canto,et al.  On the relationship between sloppiness and identifiability. , 2016, Mathematical biosciences.

[43]  Uri Alon,et al.  Robustness in Glyoxylate Bypass Regulation , 2009, PLoS Comput. Biol..

[44]  W. Haddad,et al.  Nonnegative and Compartmental Dynamical Systems , 2010 .

[45]  Gábor Szederkényi,et al.  Kinetic feedback design for polynomial systems , 2016 .

[46]  Gheorghe Craciun,et al.  Toric Differential Inclusions and a Proof of the Global Attractor Conjecture , 2015, 1501.02860.

[47]  Antonis Papachristodoulou,et al.  Structural Identifiability of Dynamic Systems Biology Models , 2016, PLoS Comput. Biol..

[48]  J. Banga,et al.  Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods , 2011, PloS one.

[49]  David F. Anderson,et al.  A Proof of the Global Attractor Conjecture in the Single Linkage Class Case , 2011, SIAM J. Appl. Math..

[50]  Tatiana V. Guy,et al.  Scalable Decision Making : Uncertainty , Imperfection , Deliberation , 2014 .

[51]  Structural analysis of kinetic systems with uncertain parameters , 2016 .

[52]  Julio R. Banga,et al.  Inference of complex biological networks: distinguishability issues and optimization-based solutions , 2011, BMC Systems Biology.

[53]  H. Kitano,et al.  A quantitative characterization of the yeast heterotrimeric G protein cycle , 2003, Proceedings of the National Academy of Sciences of the United States of America.