Robots in Agriculture: State of Art and Practical Experiences

The presence of robots in agriculture has grown significantly in recent years, overcoming some of the challenges and complications of this field. This chapter aims to collect a com‐ plete and recent state of the art about the application of robots in agriculture. The work addresses this topic from two perspectives. On the one hand, it involves the disciplines that lead the automation of agriculture, such as precision agriculture and greenhouse farming, and collects the proposals for automatizing tasks like planting and harvesting, environ‐ mental monitoring and crop inspection and treatment. On the other hand, it compiles and analyses the robots that are proposed to accomplish these tasks: e.g. manipulators, ground vehicles and aerial robots. Additionally, the chapter reports with more detail some practi‐ cal experiences about the application of robot teams to crop inspection and treatment in outdoor agriculture, as well as to environmental monitoring in greenhouse farming.

[1]  Simon Bennertz,et al.  Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging , 2014, Remote. Sens..

[2]  J. Baluja,et al.  Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV) , 2012, Irrigation Science.

[3]  Zhao Dean,et al.  System Design and Control of an Apple Harvesting Robot , 2020, ArXiv.

[4]  Kenta Shigematsu,et al.  Evaluation of a strawberry-harvesting robot in a field test , 2010 .

[5]  P. Zarco-Tejada,et al.  Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera , 2012 .

[6]  R. Ehsani,et al.  Detection of Laurel Wilt Disease in Avocado Using Low Altitude Aerial Imaging , 2015, PloS one.

[7]  Heon Hwang,et al.  Strawberry Harvesting Robot for Bench-type Cultivation , 2012 .

[8]  Won Suk Lee,et al.  Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees , 2013 .

[9]  Antonio Barrientos,et al.  Aerial Fleet in RHEA Project: A High Vantage Point Contributions to ROBOT 2013 , 2013, ROBOT.

[10]  Alberto Tellaeche,et al.  A new vision-based approach to differential spraying in precision agriculture , 2008 .

[11]  A. A. Aljanobi,et al.  A setup of mobile robotic unit for fruit harvesting , 2010, 19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010).

[12]  Gonzalo Pajares,et al.  Fleets of robots for environmentally-safe pest control in agriculture , 2017, Precision Agriculture.

[13]  Avital Bechar,et al.  Agricultural robots for field operations: Concepts and components , 2016 .

[14]  Shigehiko Hayashi,et al.  Robotic Harvesting System for Eggplants , 2002 .

[15]  Jose L Pons,et al.  Design and implementation of an aided fruit‐harvesting robot (Agribot) , 1998 .

[16]  Francisca López Granados Weed detection for site-specific weed management: Mapping and real-time approaches , 2011 .

[17]  E. J. van Henten,et al.  Field Test of an Autonomous Cucumber Picking Robot , 2003 .

[18]  Qiang Zhan,et al.  Near-Optimal Trajectory Planning of a Spherical Mobile Robot for Environment Exploration , 2008, 2008 IEEE Conference on Robotics, Automation and Mechatronics.

[19]  Claes Lund Dühring A Low Cost, Modular Robotics Tool Carrier For Precision Agriculture Research , 2016 .

[20]  Juan M. Herrero,et al.  Monitorización y Control de Procesos. Una Visión Teórico-Práctica Aplicada a Invernaderos , 2010 .

[21]  S. Kitamura,et al.  Recognition and cutting system of sweet pepper for picking robot in greenhouse horticulture , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[22]  T. Horie,et al.  Asparagus harvesting robot coordinated with 3-D vision sensor , 2009, 2009 IEEE International Conference on Industrial Technology.

[23]  Guanghui Li,et al.  Nonlinear Adaptive PID Control for Greenhouse Environment Based on RBF Network , 2012, Sensors.

[24]  Michael Schirrmann,et al.  Estimating wheat biomass by combining image clustering with crop height , 2016, Comput. Electron. Agric..

[25]  Tateshi Fujiura,et al.  Cherry-harvesting robot , 2008 .

[26]  S. F. D. Gennaro,et al.  Unmanned Aerial Vehicle (UAV)-based remote sensing to monitor grapevine leaf stripe disease within a vineyard affected by esca complex , 2016 .

[27]  John F. Reid,et al.  Stereo vision three-dimensional terrain maps for precision agriculture , 2008 .

[28]  Antonio Barrientos,et al.  Mini-UAV Based Sensory System for Measuring Environmental Variables in Greenhouses , 2015, Sensors.

[29]  Gonzalo Pajares,et al.  Camera Sensor Arrangement for Crop/Weed Detection Accuracy in Agronomic Images , 2013, Sensors.

[30]  Naoshi Kondo,et al.  A Machine Vision for Tomato Cluster Harvesting Robot , 2008 .

[31]  Eric Claesen,et al.  Autonomous Fruit Picking Machine: A Robotic Apple Harvester , 2007, FSR.

[32]  Tom Lyden,et al.  The Robot Farmer , 2019 .

[33]  E. V. Henten,et al.  Greenhouse climate management : an optimal control approach , 1994 .

[34]  Guilherme A. S. Pereira,et al.  Multi-UAV Routing for Area Coverage and Remote Sensing with Minimum Time , 2015, Sensors.

[35]  Durham K. Giles,et al.  Use of remotely piloted aircraft for pesticide applications: Issues and outlook , 2016 .

[36]  Giulio Reina,et al.  Agricultural robot for radicchio harvesting , 2006, J. Field Robotics.

[37]  Alan M. Lefcourt,et al.  A survey of unmanned ground vehicles with applications to agricultural and environmental sensing , 2016, SPIE Commercial + Scientific Sensing and Imaging.

[38]  Kjeld Jensen,et al.  A low cost, modular robotics tool carrier for precision agriculture research , 2012 .

[39]  Angela Ribeiro,et al.  Multi-path planning based on a NSGA-II for a fleet of robots to work on agricultural tasks , 2012, 2012 IEEE Congress on Evolutionary Computation.

[40]  Fernando Santos Osório,et al.  The use of unmanned aerial vehicles and wireless sensor networks for spraying pesticides , 2014, J. Syst. Archit..

[41]  Gustavo Belforte,et al.  Robot Design and Testing for Greenhouse Applications , 2006 .

[42]  V. P. Sethi,et al.  Survey and evaluation of heating technologies for worldwide agricultural greenhouse applications , 2008 .

[43]  Vassilios D. Tourassis,et al.  Design of an advanced prototype robot for white asparagus harvesting , 2009, 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[44]  Jangmyung Lee,et al.  In Situ 3D Segmentation of Individual Plant Leaves Using a RGB-D Camera for Agricultural Automation , 2015, Sensors.

[45]  Tian-Hu Liu,et al.  Design and Prototyping a Harvester for Litchi Picking , 2011, 2011 Fourth International Conference on Intelligent Computation Technology and Automation.

[46]  Chandima Gomes,et al.  Mechanisation of large-scale agricultural fields in developing countries - a review. , 2016, Journal of the science of food and agriculture.

[47]  Francisco Rodríguez,et al.  Modeling and Control of Greenhouse Crop Growth , 2014 .

[48]  Antonio Barrientos,et al.  Moisture measurement in crops using spherical robots , 2013, Ind. Robot.

[49]  Hans W. Griepentrog,et al.  A survey of future farm automation – a descriptive analysis of survey responses , 2013 .

[50]  D. Mulla Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps , 2013 .

[51]  F. Baret,et al.  Green area index from an unmanned aerial system over wheat and rapeseed crops , 2014 .

[52]  Tae-Soo Chon,et al.  Sampling of Bemisia tabaci adults using a pre-programmed autonomous pest control robot , 2014 .

[53]  Antonio Barrientos,et al.  Aerial coverage optimization in precision agriculture management: A musical harmony inspired approach , 2013 .

[54]  Yuanshen Zhao,et al.  A review of key techniques of vision-based control for harvesting robot , 2016, Comput. Electron. Agric..

[55]  David Pimentel,et al.  ENVIRONMENTAL AND ECONOMIC COSTS OF THE APPLICATION OF PESTICIDES PRIMARILY IN THE UNITED STATES , 2005 .

[56]  Cao Qixin,et al.  Fruit Detachment and Classification Method for Strawberry Harvesting Robot , 2008 .

[57]  David G. Schmale,et al.  Tracking the potato late blight pathogen in the atmosphere using unmanned aerial vehicles and Lagrangian modeling , 2011 .

[58]  Vijay Kumar,et al.  Towards autonomous phytopathology: Outcomes and challenges of citrus greening disease detection through close-range remote sensing , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[59]  Francisca López-Granados,et al.  Weed detection for site-specific weed management: mapping and real-time approaches , 2011 .

[60]  Koichi Osuka,et al.  Design and control of a heavy material handling manipulator for agricultural robots , 2008, Auton. Robots.

[61]  Jorge Torres-Sánchez,et al.  High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology , 2015, PloS one.

[62]  J. Flexas,et al.  UAVs challenge to assess water stress for sustainable agriculture , 2015 .

[63]  Antonio Barrientos,et al.  Sensorized robotic sphere for large exterior critical infrastructures supervision , 2013 .

[64]  Wan Ishak Wan Ismail,et al.  Design and development of eggplant harvester for gantry system , 2010 .

[65]  Giovanni Muscato,et al.  A prototype of an orange picking robot: past history, the new robot and experimental results , 2005, Ind. Robot.

[66]  Francisco Manzano-Agugliaro,et al.  Sistema inalámbrico de monitorización para cultivos en invernadero , 2014 .

[67]  Roop Pahuja,et al.  A Wireless Sensor Network for Greenhouse Climate Control , 2013, IEEE Pervasive Computing.

[68]  Avital Bechar,et al.  Agricultural robots for field operations. Part 2: Operations and systems , 2017 .

[69]  Thomas Rath,et al.  Robotic harvesting of Gerbera Jamesonii based on detection and three-dimensional modeling of cut flower pedicels , 2009 .

[70]  Alaine Margarete Guimarães,et al.  AUTOMATIC CONTROL AND ROBOTICS FOR GREENHOUSES: A REVIEW ON HEATING TECHNOLOGIES , 2016 .

[71]  Antonio Barrientos,et al.  A UGV Approach to Measure the Ground Properties of Greenhouses , 2015, ROBOT.

[72]  Giorgio Grasso,et al.  Localization of spherical fruits for robotic harvesting , 2001, Machine Vision and Applications.

[73]  J. Bouma,et al.  Future Directions of Precision Agriculture , 2005, Precision Agriculture.

[74]  Pablo J. Zarco-Tejada,et al.  High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices , 2013 .

[75]  Jiang Kai,et al.  Study on strawberry robotic harvesting system , 2012, 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE).

[76]  Peter Ahrendt,et al.  Trends in Robotic Sensor Technologies for Fruit Harvesting: 2010-2015☆ , 2015 .

[77]  David C. Slaughter,et al.  Autonomous robotic weed control systems: A review , 2008 .

[78]  Adam J. Mathews,et al.  Visualizing and Quantifying Vineyard Canopy LAI Using an Unmanned Aerial Vehicle (UAV) Collected High Density Structure from Motion Point Cloud , 2013, Remote. Sens..

[79]  Yael Edan,et al.  Robotic melon harvesting , 2000, IEEE Trans. Robotics Autom..

[80]  Yael Edan,et al.  Harvesting Robots for High‐value Crops: State‐of‐the‐art Review and Challenges Ahead , 2014, J. Field Robotics.

[81]  Deng Jiwei,et al.  A method for improving detection of gas concentrations using quadrotor , 2016, 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference.

[82]  Gilles Rabatel,et al.  Registration of visible and near infrared unmanned aerial vehicle images based on Fourier-Mellin transform , 2016, Precision Agriculture.

[83]  Francisco Rodríguez,et al.  Simulation of Greenhouse Climate Monitoring and Control with Wireless Sensor Network and Event-Based Control , 2009, Sensors.

[84]  Xin-Yu Xue,et al.  Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers , 2016 .

[85]  Ricardo Carelli,et al.  Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection , 2011 .

[86]  A. Shklyar,et al.  Combination of Forced Ventilation and Fogging Systems for Cooling Greenhouses , 2003 .

[87]  A J Both,et al.  Guidelines for measuring and reporting environmental parameters for experiments in greenhouses , 2015, Plant Methods.

[88]  Pablo J. Zarco-Tejada,et al.  Detecting water stress effects on fruit quality in orchards with time-series PRI airborne imagery , 2010 .

[89]  V. Sethi,et al.  Survey of cooling technologies for worldwide agricultural greenhouse applications , 2007 .

[90]  Nitaigour P. Mahalik,et al.  Autonomous Greenhouse Mobile Robot Driving Strategies From System Integration Perspective: Review and Application , 2015, IEEE/ASME Transactions on Mechatronics.

[91]  Antonio Barrientos,et al.  Heterogeneous Multi-Robot System for Mapping Environmental Variables of Greenhouses , 2016, Sensors.

[92]  Tomonari Furukawa,et al.  Autonomous Pesticide Spraying Robot for use in a Greenhouse , 2005 .

[93]  P. Zarco-Tejada,et al.  Mapping crop water stress index in a ‘Pinot-noir’ vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle , 2014, Precision Agriculture.

[94]  Bo-Hui Tang,et al.  Inversion of the PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[95]  Naoshi Kondo,et al.  Cucumber Harvesting Robot and Plant Training System , 1999, J. Robotics Mechatronics.

[96]  Jang-myung Lee,et al.  Detection of small-sized insect pest in greenhouses based on multifractal analysis , 2015 .

[97]  R. Noble,et al.  AE—Automation and Emerging Technologies , 2001 .

[98]  Min Zhang,et al.  Effect of carbon dioxide enrichment on health-promoting compounds and organoleptic properties of tomato fruits grown in greenhouse. , 2014, Food chemistry.

[99]  Shivaji Bachche,et al.  Deliberation on Design Strategies of Automatic Harvesting Systems: A Survey , 2015, Robotics.

[100]  R. Ramasamy,et al.  Current and Prospective Methods for Plant Disease Detection , 2015, Biosensors.

[101]  Giacomo Carli,et al.  6 th International Conference on Information and Communication Technologies in Agriculture, Food and Environment (HAICTA 2013) Drivers of Precision Agriculture Technologies Adoption: A Literature Review , 2013 .

[102]  Yongcan Cao,et al.  Band-reconfigurable Multi-UAV-based Cooperative Remote Sensing for Real-time Water Management and Distributed Irrigation Control , 2008 .

[103]  Terenziano Raparelli,et al.  Development of a new harvesting module for saffron flower detachment , 2011 .

[104]  Julio Gómez López,et al.  Wireless surveillance system for greenhouse crops - Sistema inalámbrico de monitorización para cultivos en invernadero , 2014 .

[105]  Fathi Fourati,et al.  A greenhouse control with feed-forward and recurrent neural networks , 2007, Simul. Model. Pract. Theory.

[106]  Heon Hwang,et al.  Development of multi-functional tele-operative modular robotic system for greenhouse watermelon , 2003, Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003).