A comparison of LBGs, DRGs, and BzK galaxies: their contribution to the stellar mass density in the GOODS-MUSIC sample

Context. The classification scheme for high redshift galaxies is complex at the present time, with simple colour-selection criteria (i.e. EROs, IEROs, LBGs, DRGs, BzKs), resulting in ill-defined properties for the stellar mass and star formation rate of these distant galaxies. Aims. The goal of this work is to investigate the properties of different classes of high- z galaxies, focusing in particular on the stellar masses of LBGs, DRGs, and BzKs, in order to derive their contribution to the total mass budget of the distant Universe. Methods. We used the GOODS-MUSIC catalog, containing ~3000  K s-selected (~10 000 z -selected) galaxies with multi-wavelength coverage extending from the U band to the Spitzer $8~\mu$m band, with spectroscopic or accurate photometric redshifts. We selected samples of BM/BX/LBGs, DRGs, and BzK galaxies to discuss the overlap and the limitations of these criteria, which can be overridden by a selection criterion based on physical parameters. We then measured the stellar masses of these galaxies and computed the stellar mass density (SMD) for the different samples up to redshift $\simeq$4. Results. We show that the BzK-PE criterion is not optimal for selecting early type galaxies at the faint end. On the other hand, BzK-SF is highly contaminated by passively evolving galaxies at red $z-K$s colours. We find that LBGs and DRGs contribute almost equally to the global SMD at $z\ge 2$ and, in general, that star-forming galaxies form a substantial fraction of the universal SMD. Passively evolving galaxies show a strong negative density evolution from redshift 2 to 3, indicating that we are witnessing the epoch of mass assembly of such objects. Finally we have indications that by pushing the selection to deeper magnitudes, the contribution of less massive DRGs could overtake that of LBGs. Deeper surveys, like the HUDF, are required to confirm this suggestion.

[1]  E. Gawiser,et al.  Clustering of K-selected Galaxies at 2 < z < 3.5: Evidence for a Color-Density Relation , 2006, astro-ph/0606330.

[2]  Monteporzio,et al.  The Galaxy Mass Function up to z=4 in the GOODS-MUSIC sample: into the epoch of formation of massive galaxies ⋆ , 2006, astro-ph/0609068.

[3]  Tucson,et al.  Comparing dynamical and photometric-stellar masses of early-type galaxies at z ! 1 ! , 2006, astro-ph/0608545.

[4]  P. P. van der Werf,et al.  Measuring the Average Evolution of Luminous Galaxies at z < 3: The Rest-Frame Optical Luminosity Density, Spectral Energy Distribution, and Stellar Mass Density , 2006, astro-ph/0606536.

[5]  J. Dunlop,et al.  Massive Galaxies at Redshifts 5, 2006 .

[6]  C. Steidel,et al.  The Stellar, Gas, and Dynamical Masses of Star-forming Galaxies at z ~ 2 , 2006, astro-ph/0604041.

[7]  A. Renzini Stellar Population Diagnostics of Elliptical Galaxy Formation , 2006, astro-ph/0603479.

[8]  L. Moscardini,et al.  The clustering evolution of distant red galaxies in the GOODS-MUSIC sample , 2006, astro-ph/0603095.

[9]  A. Fontana,et al.  The GOODS-MUSIC sample: a multicolour catalog of near-IR selected galaxies in the GOODS-South field , , 2006, astro-ph/0603094.

[10]  Marijn Franx,et al.  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 6/22/04 DIRECT MEASUREMENTS OF THE STELLAR CONTINUA AND BALMER/4000 ˚A BREAKS OF RED Z> 2 , 2006 .

[11]  Dario Fadda,et al.  Star Formation and Extinction in Redshift z~2 Galaxies: Inferences from Spitzer MIPS Observations , 2006, astro-ph/0602596.

[12]  H. Rix,et al.  The Space Density and Colors of Massive Galaxies at 2 < z < 3: The Predominance of Distant Red Galaxies , 2006, astro-ph/0601113.

[13]  M. Nonino,et al.  Cosmic evolution of the galaxy's mass and luminosity functions by morphological type from multi-wavelength data in the CDF-South , 2006, astro-ph/0601003.

[14]  J. Dunlop,et al.  Further constraints on the evolution of Ks-selected galaxies in the GOODS/CDFS field , 2005, astro-ph/0511571.

[15]  Ssc,et al.  Spitzer Observations of Massive, Red Galaxies at High Redshift , 2005, astro-ph/0511289.

[16]  A. Cimatti,et al.  A Wide Area Survey for High-Redshift Massive Galaxies. I. Number Counts and Clustering of BzKs and EROs , 2005, astro-ph/0510299.

[17]  C. Steidel,et al.  A Census of Optical and Near-Infrared Selected Star-forming and Passively Evolving Galaxies at Redshift z ~ 2 , 2005, astro-ph/0507264.

[18]  A. Fontana,et al.  The K20 survey. VII. The spectroscopic catalogue: spectral properties and evolution of the galaxy population ⋆, ⋆⋆ , 2005, astro-ph/0504248.

[19]  Jia-Sheng Huang,et al.  Ultraviolet to Mid-Infrared Observations of Star-forming Galaxies at z ~ 2: Stellar Masses and Stellar Populations , 2005, astro-ph/0503485.

[20]  W. Brandt,et al.  DEEP EXTRAGALACTIC X-RAY SURVEYS , 2005, astro-ph/0501058.

[21]  M. Salvato,et al.  The Stellar Mass Function of Galaxies to z ~ 5 in the FORS Deep and GOODS-South Fields , 2004, astro-ph/0412167.

[22]  G. Zamorani,et al.  The B-Band Luminosity Function of Red and Blue Galaxies up to z = 3.5 , 2004, astro-ph/0412044.

[23]  R. J. Ivison,et al.  The Rest-Frame Optical Properties of SCUBA Galaxies , 2004, astro-ph/0412574.

[24]  A. Cimatti,et al.  A New Photometric Technique for the Joint Selection of Star-forming and Passive Galaxies at 1.4 ≲ z ≲ 2.5 , 2004, astro-ph/0409041.

[25]  P. McCarthy Eros and Faint Red Galaxies , 2004 .

[26]  P. P. van der Werf,et al.  A Substantial Population of Red Galaxies at z > 2: Modeling of the Spectral Energy Distributions of an Extended Sample , 2004, astro-ph/0408077.

[27]  S. M. Fall,et al.  High-Redshift Extremely Red Objects in the Hubble Space Telescope Ultra Deep Field Revealed by the GOODS Infrared Array Camera Observations , 2004, astro-ph/0408070.

[28]  A. Cimatti,et al.  The K20 survey. VI. The distribution of the stellar masses in galaxies up to z 2 , 2004, astro-ph/0405055.

[29]  R. Bender,et al.  The Munich Near-Infrared Cluster Survey (MUNICS). VI. The Stellar Masses of K-Band-selected Field Galaxies to z ~ 1.2 , 2004 .

[30]  Max Pettini,et al.  Optical Selection of Star-forming Galaxies at Redshifts 1 < z < 3 , 2004, astro-ph/0401445.

[31]  J. Dunlop,et al.  A deeper view of extremely red galaxies: the redshift distribution in the GOODS/CDFS ISAAC field , 2004, astro-ph/0401047.

[32]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[33]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[34]  S. M. Fall,et al.  The Great Observatories Origins Deep Survey: Initial Results from Optical and Near-Infrared Imaging , 2003, astro-ph/0309105.

[35]  A. Fontana,et al.  The Assembly of Massive Galaxies from Near-Infrared Observations of the Hubble Deep Field-South , 2003, astro-ph/0307332.

[36]  M. Giavalisco,et al.  Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.

[37]  P. P. van der Werf,et al.  Spectroscopic Confirmation of a Substantial Population of Luminous Red Galaxies at Redshifts z ≳ 2 , 2003, astro-ph/0303166.

[38]  P. P. van der Werf,et al.  A Significant Population of Red, Near-Infrared-selected High-Redshift Galaxies , 2003, astro-ph/0303163.

[39]  Henry C. Ferguson,et al.  The Evolution of the Global Stellar Mass Density at 0 < z < 3 , 2002, astro-ph/0212242.

[40]  R. Nichol,et al.  The dependence of star formation history and internal structure on stellar mass for 105 low‐redshift galaxies , 2002, astro-ph/0205070.

[41]  P. P. van der Werf,et al.  Ultradeep Near-Infrared ISAAC Observations of the Hubble Deep Field South: Observations, Reduction, Multicolor Catalog, and Photometric Redshifts , 2002, astro-ph/0212236.

[42]  Mark Dickinson,et al.  The Great Observatories Origins Deep Survey , 2002, astro-ph/0204213.

[43]  A. Cimatti,et al.  The K20 survey - I. Disentangling old and dusty star-forming galaxies in the ERO population , 2001, astro-ph/0111527.

[44]  A. Fontana,et al.  Photometric Redshifts and Selection of High-Redshift Galaxies in the NTT and Hubble Deep Fields , 2000, astro-ph/0009158.

[45]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[46]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[47]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[48]  C. Steidel,et al.  Lyman Limit Imaging of High Redshift Galaxies. III. New Observations of 4 QSO Fields , 1995, astro-ph/9509089.

[49]  Donald Hamilton,et al.  Deep imaging of high redshift QSO fields below the Lyman limit. II - Number counts and colors of field galaxies , 1993 .