Hydrothermally-altered mafic crust as source for early Earth TTG: Pb/Hf/O isotope and trace element evidence in zircon from TTG of the Eoarchean Saglek Block, N. Labrador

[1]  M. Kusiak,et al.  Complexity of the early Archean Uivak Gneiss: Insights from Tigigakyuk Inlet, Saglek Block, Labrador, Canada and possible correlations with south West Greenland , 2018, Precambrian Research.

[2]  J. Vervoort,et al.  Using the magmatic record to constrain the growth of continental crust—The Eoarchean zircon Hf record of Greenland , 2018 .

[3]  S. Wilde,et al.  Remnants of Eoarchean continental crust derived from a subducted proto-arc , 2018, Science Advances.

[4]  C. Fisher,et al.  Data Reduction of Laser Ablation Split‐Stream (LASS) Analyses Using Newly Developed Features Within Iolite: With Applications to Lu‐Hf + U‐Pb in Detrital Zircon and Sm‐Nd +U‐Pb in Igneous Monazite , 2017 .

[5]  A. Hofmann,et al.  Juvenile crust formation in the Zimbabwe Craton deduced from the O-Hf isotopic record of 3.8–3.1 Ga detrital zircons , 2017 .

[6]  M. Kusiak,et al.  Peak to post-peak thermal history of the Saglek Block of Labrador: A multiphase and multi-instrumental approach to geochronology , 2017 .

[7]  D. Rubatto Zircon: The Metamorphic Mineral , 2017 .

[8]  L. Reisberg,et al.  Chemical stratification in the post-magma ocean Earth inferred from coupled 146,147 Sm- 142,143 Nd systematics in ultramafic rocks of the Saglek block (3.25-3.9 Ga; northern Labrador, Canada) , 2017 .

[9]  S. Swapp,et al.  Hadean origins of Paleoarchean continental crust in the central Wyoming Province , 2017 .

[10]  T. Hirata,et al.  A prolonged granitoid formation in Saglek Block, Labrador: Zonal growth and crustal reworking of continental crust in the Eoarchean , 2017 .

[11]  T. Harrison,et al.  Hadean Zircon Petrochronology , 2017 .

[12]  J. Vervoort,et al.  Coupled zircon Lu–Hf and U–Pb isotopic analyses of the oldest terrestrial crust, the >4.03 Ga Acasta Gneiss Complex , 2017 .

[13]  M. Whitehouse,et al.  The effect of weathering on U-Th-Pb and oxygen isotope systems of ancient zircons from the Jack Hills, Western Australia , 2017 .

[14]  T. M. Harrison,et al.  Recovering the primary geochemistry of Jack Hills zircons through quantitative estimates of chemical alteration , 2016 .

[15]  R. Creaser,et al.  No evidence for Hadean continental crust within Earth’s oldest evolved rock unit , 2016 .

[16]  I. Butler,et al.  The origin of Earth’s first continents and the onset of plate tectonics , 2016 .

[17]  R. Walker,et al.  Widespread tungsten isotope anomalies and W mobility in crustal and mantle rocks of the Eoarchean Saglek Block, northern Labrador, Canada: Implications for early Earth processes and W recycling , 2016 .

[18]  T. Hirata,et al.  Occurrence and geochronology of the Eoarchean, ∼3.9 Ga, Iqaluk Gneiss in the Saglek Block, northern Labrador, Canada: Evidence for the oldest supracrustal rocks in the world , 2016 .

[19]  V. Bennett,et al.  Chondritic Lu/Hf in the early crust-mantle system as recorded by zircon populations from the oldest Eoarchean rocks of Yilgarn Craton, West Australia and Enderby Land, Antarctica , 2016 .

[20]  J. Vervoort,et al.  Clarifying the zircon Hf isotope record of crust–mantle evolution , 2016 .

[21]  D. McInerney,et al.  Strengths and limitations of zircon Lu-Hf and O isotopes in modelling crustal growth , 2016 .

[22]  M. Whitehouse,et al.  Can oxygen isotopes in magmatic zircon be modified by metamorphism? A case study from the Eoarchean Dniester-Bug Series, Ukrainian Shield , 2016 .

[23]  K. Collerson,et al.  Geology of the Eoarchean, > 3.95 Ga, Nulliak supracrustal rocks in the Saglek Block, northern Labrador, Canada: The oldest geological evidence for plate tectonics , 2015 .

[24]  J. Vervoort,et al.  Hf isotopes in detrital and inherited zircons of the Pilbara Craton provide no evidence for Hadean continents , 2015 .

[25]  T. Harrison,et al.  Eoarchean crustal evolution of the Jack Hills zircon source and loss of Hadean crust , 2014 .

[26]  Dunyi Liu,et al.  Generation of early Archaean grey gneisses through melting of older crust in the eastern Kaapvaal craton, southern Africa , 2014 .

[27]  J. Moyen,et al.  The diversity and evolution of late-Archean granitoids: Evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga , 2014 .

[28]  L. Heaman,et al.  Earth’s earliest evolved crust generated in an Iceland-like setting , 2014 .

[29]  J. Blichert‐Toft,et al.  Why Archaean TTG cannot be generated by MORB melting in subduction zones , 2014 .

[30]  M. Rosing,et al.  Constraining the process of Eoarchean TTG formation in the Itsaq Gneiss Complex, southern West Greenland , 2014 .

[31]  A. Gerdes,et al.  The oldest zircons of Africa—Their U–Pb–Hf–O isotope and trace element systematics, and implications for Hadean to Archean crust–mantle evolution , 2014 .

[32]  R. Carlson,et al.  Half a billion years of reworking of Hadean mafic crust to produce the Nuvvuagittuq Eoarchean felsic crust , 2013 .

[33]  T. Harrison,et al.  Post-Hadean transitions in Jack Hills zircon provenance: A signal of the Late Heavy Bombardment? , 2013 .

[34]  J. Moyen,et al.  Forty years of TTG research , 2012 .

[35]  F. Albarède,et al.  Hafnium isotope evidence from Archean granitic rocks for deep-mantle origin of continental crust , 2012 .

[36]  P. Vermeesch On the visualisation of detrital age distributions , 2012 .

[37]  M. Rosing,et al.  Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago , 2012, Nature.

[38]  L. Ren,et al.  Growth and reworking of the early Precambrian continental crust in the North China Craton: Constraints from zircon Hf isotopes , 2012 .

[39]  J. Hellstrom,et al.  Iolite: Freeware for the visualisation and processing of mass spectrometric data , 2011 .

[40]  D. Moser,et al.  Zircon U-Pb isotope, δ18O and trace element response to 80 m.y. of high temperature metamorphism in the lower crust: Sluggish diffusion and new records of Archean craton formation , 2011, American Journal of Science.

[41]  T. Harrison,et al.  Early Archean crustal evolution of the Jack Hills Zircon source terrane inferred from Lu–Hf, 207Pb/206Pb, and δ18O systematics of Jack Hills zircons , 2011 .

[42]  D. Garbe‐Schönberg,et al.  Mechanisms of Archean crust formation inferred from high-precision HFSE systematics in TTGs , 2011 .

[43]  A. Gerdes,et al.  Hafnium isotope record of the Ancient Gneiss Complex, Swaziland, southern Africa: evidence for Archaean crust–mantle formation and crust reworking between 3.66 and 2.73 Ga , 2011, Journal of the Geological Society.

[44]  A. Nutman,et al.  Archaean fluid-assisted crustal cannibalism recorded by low δ18O and negative εHf(T) isotopic signatures of West Greenland granite zircon , 2011 .

[45]  S. König,et al.  Highly depleted Hadean mantle reservoirs in the sources of early Archean arc-like rocks, Isua supracrustal belt, southern West Greenland , 2010 .

[46]  D. Nelson,et al.  Reworking of Earth's first crust: Constraints from Hf isotopes in Archean zircons from Mt. Narryer, Australia , 2010 .

[47]  J. Vervoort,et al.  Hadean crustal evolution revisited: New constraints from Pb-Hf isotope systematics of the Jack Hills zircons , 2010 .

[48]  A. Nutman,et al.  In situ U–Pb, O and Hf isotopic compositions of zircon and olivine from Eoarchaean rocks, West Greenland: New insights to making old crust , 2009 .

[49]  A. Gerdes,et al.  Zircon formation versus zircon alteration — New insights from combined U–Pb and Lu–Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt , 2009 .

[50]  J. Darling,et al.  Concurrent Pb–Hf isotope analysis of zircon by laser ablation multi-collector ICP-MS, with implications for the crustal evolution of Greenland and the Himalayas , 2009 .

[51]  T. Hirata,et al.  Reworking of Hadean crust in the Acasta gneisses, northwestern Canada: Evidence from in-situ Lu–Hf isotope analysis of zircon , 2009 .

[52]  A. Bouvier,et al.  The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets , 2008 .

[53]  T. Harrison,et al.  Early (≥ 4.5 Ga) formation of terrestrial crust: Lu–Hf, δ18O, and Ti thermometry results for Hadean zircons , 2008 .

[54]  Dunyi Liu,et al.  SHRIMP U-Pb and CAMECA 1280 oxygen isotope results from ancient detrital zircons in the Caozhuang quartzite, Eastern Hebei, North China Craton: Evidence for crustal reworking 3.8 Ga ago , 2008, American Journal of Science.

[55]  D. Moser,et al.  Creation of a continent recorded in zircon zoning , 2008 .

[56]  F. Albarède,et al.  Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust , 2008 .

[57]  The Archaean gneiss complex of northern Labrador A review of current results, ideas and problems , 2008 .

[58]  T. M. Harrison,et al.  Constraints on Hadean zircon protoliths from oxygen isotopes, Ti‐thermometry, and rare earth elements , 2007 .

[59]  U. Schaltegger,et al.  Re-equilibration of Zircon in Aqueous Fluids and Melts , 2007 .

[60]  L. Heaman,et al.  Relicts of Earth's earliest crust: U-Pb, Lu-Hf, and morphological characteristics of >3.7 Ga detrital zircon of the western Canadian Shield , 2006 .

[61]  S. Kamo,et al.  Precise U-Pb zircon ID-TIMS ages provide an alternative interpretation to early ion microprobe ages and new insights into Archean crustal processes, northern Labrador , 2006 .

[62]  M. Whitehouse,et al.  Volcanic resurfacing and the early terrestrial crust: Zircon U-Pb and REE constraints from the Isua Greenstone Belt, southern West Greenland [rapid communication] , 2005 .

[63]  M. Basei,et al.  4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon , 2005 .

[64]  S. Wilde,et al.  Magmatic δ18O in 4400–3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean , 2005 .

[65]  J. Eiler,et al.  Oxygen isotope evidence for slab melting in modern and ancient subduction zones , 2005 .

[66]  R. Stern,et al.  Grain-scale variations in trace element composition of fluid-altered zircon, Acasta Gneiss Complex, northwestern Canada , 2005 .

[67]  D. Champion,et al.  An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution , 2005 .

[68]  P. Clift,et al.  Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust , 2004 .

[69]  C. Isachsen,et al.  The decay constant of 176Lu determined from Lu-Hf and U-Pb isotope systematics of terrestrial Precambrian high-temperature mafic intrusions , 2003 .

[70]  J. Valley Oxygen Isotopes in Zircon , 2003 .

[71]  F. Corfu,et al.  Atlas of Zircon Textures , 2003 .

[72]  W. Griffin,et al.  Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes , 2002 .

[73]  S. Wilde,et al.  Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ 18 O continental crust and oceans in the Early Archean , 2001 .

[74]  L. P. Black,et al.  Metamorphic zircon formation by solid‐state recrystallization of protolith igneous zircon , 2000 .

[75]  W. McDonough,et al.  The composition of the Earth , 1995 .

[76]  Brian M. Smith,et al.  Large scale isotopic Sr, Nd and O isotopic anatomy of altered oceanic crust: DSDP/ODP sites417/418 , 1995 .

[77]  B. T. Hansen,et al.  Petrological and whole rock isotopic characteristics of tectonically juxtaposed Archaean gneisses in the Okak area of the Nain Province, Labrador: relevance for terrane models , 1993 .

[78]  A. Nutman,et al.  U–Pb ages of single zircons within "Upernavik" metasedimentary rocks and regional implications for the tectonic evolution of the Archaean Nain Province, Labrador , 1992 .

[79]  L. Campbell,et al.  Evidence for extreme mantle fractionation in early Archaean ultramafic rocks from northern Labrador , 1991, Nature.

[80]  S. Noble,et al.  U-Pb mineral ages from northern Labrador: Possible evidence for interlayering of Early and Middle Archean tectonic slices , 1990 .

[81]  W. Compston,et al.  U–Th–Pb ages of single zircons in Archaean supracrustals from Nain Province, Labrador, Canada , 1989 .

[82]  W. Compston,et al.  Ion probe U-Th-Pb zircon dating of polymetamorphic orthogneisses from northern Labrador, Canada , 1989 .

[83]  J. Alt,et al.  An oxygen isotopic profile through the upper kilometer of the oceanic crust, DSDP hole 504B , 1986 .

[84]  A. Nutman,et al.  Chemical and isotopic effects of late Archaean high-grade metamorphism and granite injection on early Archaean gneisses, Saglek-Hebron, northern Labrador , 1986, Geological Society, London, Special Publications.

[85]  K. Collerson,et al.  Metamorphic Development of Early Archean Tonalitic and Trondhjemitic Gneisses: Saglek Area, Labrador , 1979 .

[86]  G. Wetherill,et al.  3600-m.y. RbSr ages from very early Archaean gneisses from Saglek Bay, Labrador , 1975 .

[87]  J. M. Barton RbSr isotopic characteristics and chemistry of the 3.6-b.y. Hebron gneiss, Labrador , 1975 .

[88]  K. Collerson,et al.  Field characters of the early Precambrian rocks from Saglek, coast of Labrador , 1975 .

[89]  J. Watson,et al.  A Discussion on the evolution of the Precambrian crust - The Archaean craton of the North Atlantic region , 1973, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[90]  R. Clayton,et al.  Oxygen Isotope Studies of Fresh and Weathered Submarine Basalts , 1972 .

[91]  S. Epstein,et al.  The oxygen and hydrogen isotope geochemistry of clay minerals , 1970 .