Symplectic integration of Hamiltonian systems

The authors survey past work and present new algorithms to numerically integrate the trajectories of Hamiltonian dynamical systems. These algorithms exactly preserve the symplectic 2-form, i.e. they preserve all the Poincare invariants. The algorithms have been tested on a variety of examples and results are presented for the Fermi-Pasta-Ulam nonlinear string, the Henon-Heiles system, a four-vortex problem, and the geodesic flow on a manifold of constant negative curvature. In all cases the algorithms possess long-time stability and preserve global geometrical structures in phase space.

[1]  J. Marsden,et al.  Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators , 1988 .

[2]  D. Saari,et al.  Stable and Random Motions in Dynamical Systems , 1975 .

[3]  F. G. Gustavson,et al.  Oil constructing formal integrals of a Hamiltonian system near ail equilibrium point , 1966 .

[4]  A. Weinstein Symplectic manifolds and their lagrangian submanifolds , 1971 .

[5]  V. I. Arnolʹd,et al.  Ergodic problems of classical mechanics , 1968 .

[6]  Curtis R. Menyuk,et al.  Some properties of the discrete Hamiltonian method , 1984 .

[7]  J. W. Humberston Classical mechanics , 1980, Nature.

[8]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[9]  R. D. Vogelaere,et al.  Methods of Integration which Preserve the Contact Transformation Property of the Hamilton Equations , 1956 .

[10]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[11]  R. Ruth A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.

[12]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[13]  Samuel M. Graff On the conservation of hyperbolic invariant tori for Hamiltonian systems , 1974 .

[14]  B. Dubrovin,et al.  Modern geometry--methods and applications , 1984 .

[15]  Tree graphs and the solution to the Hamilton–Jacobi equation , 1986 .

[16]  K. Feng Difference schemes for Hamiltonian formalism and symplectic geometry , 1986 .

[17]  Tosio Kato Perturbation theory for linear operators , 1966 .

[18]  Neil Pomphrey,et al.  Integrable and chaotic motions of four vortices. I. The case of identical vortices , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[19]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[20]  Ralph Abraham,et al.  Foundations Of Mechanics , 2019 .

[21]  Benjamin Weiss,et al.  Geodesic flows are Bernoullian , 1973 .

[22]  A. Fomenko The Topology of Surfaces of Constant Energy in Integrable Hamiltonian Systems, and Obstructions to Integrability , 1987 .