Loglinear multidimensional IRT models for polytomously scored items

A loglinear IRT model is proposed that relates polytomously scored item responses to a multidimensional latent space. The analyst may specify a response function for each response, indicating which latent abilities are necessary to arrive at that response. Each item may have a different number of response categories, so that free response items are more easily analyzed. Conditional maximum likelihood estimates are derived and the models may be tested generally or against alternative loglinear IRT models.

[1]  Henk Kelderman,et al.  Item bias detection using loglinear irt , 1989 .

[2]  Gerhard H. Fischer,et al.  A measurement model for the effect of mass-media , 1972 .

[3]  G. Koch,et al.  Categorical Data Analysis: Some Reflections on the Log Linear Model and Logistic Regression. Part I: Historical and Methodological Overview* , 1981 .

[4]  Magnus Stenbeck,et al.  Are Likert scales unidimensional , 1987 .

[5]  L. A. Goodman The Analysis of Cross-Classified Data: Independence, Quasi-Independence, and Interactions in Contingency Tables with or without Missing Entries , 1968 .

[6]  C. R. Rao,et al.  Linear Statistical Inference and its Applications , 1968 .

[7]  John R. Frederiksen,et al.  A Componential Theory of Reading Skills and Their Interactions. , 1981 .

[8]  Arnold L. van den Wollenberg,et al.  Two new test statistics for the rasch model , 1982 .

[9]  P. Aspden,et al.  Introduction to Optimization Methods , 1977 .

[10]  G. Masters,et al.  Rating scale analysis , 1982 .

[11]  H. O. Lancaster,et al.  Significance Tests in Discrete Distributions , 1961 .

[12]  Gerhard H. Fischer,et al.  Some Applications of Logistic Latent Trait Models with Linear Constraints on the Parameters , 1982 .

[13]  W. D. Linden,et al.  A maximin model for IRT-based test design with practical constraints , 1989 .

[14]  A. Forbes AN ITEM ANALYSIS OF THE ADVANCED MATRICES , 1964 .

[15]  Tue Tjur,et al.  A Connection between Rasch's Item Analysis Model and a Multiplicative Poisson Model , 1982 .

[16]  J. Rost Measuring Attitudes With a Threshold Model Drawing on a Traditional Scaling Concept , 1988 .

[17]  David F. Lohman,et al.  The complexity continuum in the radex and hierarchical models of intelligence , 1983 .

[18]  Hirotugu Akaike,et al.  On entropy maximization principle , 1977 .

[19]  H. Kelderman,et al.  Loglinear Rasch model tests , 1984 .

[20]  Timothy R. C. Read,et al.  Goodness-Of-Fit Statistics for Discrete Multivariate Data , 1988 .

[21]  E. B. Andersen,et al.  CONDITIONAL INFERENCE FOR MULTIPLE‐CHOICE QUESTIONNAIRES , 1973 .

[22]  K. Koehler Goodness-of-fit tests for log-linear models in sparse contingency tables , 1986 .

[23]  S. Embretson,et al.  Component Latent Trait Models for Test Design. , 1982 .

[24]  N. D. Verhelst,et al.  Extensions of the partial credit model , 1989 .

[25]  T. Theunissen Binary programming and test design , 1985 .

[26]  S. Embretson A general latent trait model for response processes , 1984 .

[27]  D. Andrich A rating formulation for ordered response categories , 1978 .

[28]  A. Jackson Stenner,et al.  TOWARD A THEORY OF CONSTRUCT DEFINITION , 1983 .

[29]  Noel A Cressie,et al.  Characterizing the manifest probabilities of latent trait models , 1983 .

[30]  Eiji Muraki,et al.  Fitting a Polytomous Item Response Model to Likert-Type Data , 1990 .

[31]  M A Just,et al.  From the SelectedWorks of Marcel Adam Just 1990 What one intelligence test measures : A theoretical account of the processing in the Raven Progressive Matrices Test , 2016 .

[32]  David Thissen,et al.  A response model for multiple choice items , 1984 .

[33]  Calyampudi R. Rao,et al.  Linear Statistical Inference and Its Applications. , 1975 .

[34]  Shelby J. Haberman,et al.  Log-Linear Models and Frequency Tables with Small Expected Cell Counts , 1977 .

[35]  F. Samejima A General Model for Free Response Data. , 1972 .

[36]  R. L. Plackett,et al.  Small samples in contingency tables , 1980 .

[37]  Georg Rasch,et al.  Probabilistic Models for Some Intelligence and Attainment Tests , 1981, The SAGE Encyclopedia of Research Design.

[38]  R. Sternberg Advances in the psychology of human intelligence , 1982 .

[39]  G. Masters A rasch model for partial credit scoring , 1982 .

[40]  P. Holland,et al.  Discrete Multivariate Analysis. , 1976 .

[41]  A. Newell ON THE ANALYSIS OF HUMAN PROBLEM SOLVING PROTOCOLS , 1966 .

[42]  David Andrich,et al.  An extension of the rasch model for ratings providing both location and dispersion parameters , 1982 .

[43]  Norman Verhelst,et al.  Maximum Likelihood Estimation in Generalized Rasch Models , 1986 .

[44]  G. Rasch On General Laws and the Meaning of Measurement in Psychology , 1961 .

[45]  Robert J. Sternberg,et al.  Advances in the Psychology of Human Intelligence : Volume 5 , 1984 .

[46]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[47]  J. Neyman,et al.  Consistent Estimates Based on Partially Consistent Observations , 1948 .

[48]  R. Darrell Bock,et al.  Estimating item parameters and latent ability when responses are scored in two or more nominal categories , 1972 .

[49]  S. Haberman Product Models for Frequency Tables Involving Indirect Observation , 1977 .

[50]  S. Haberman Analysis of qualitative data , 1978 .

[51]  G. H. Fischer,et al.  The linear logistic test model as an instrument in educational research , 1973 .

[52]  Stephen E. Fienberg,et al.  Discrete Multivariate Analysis: Theory and Practice , 1976 .