How Important Is Air–Sea Coupling in ENSO and MJO Evolution?

Abstract The effect of air–sea coupling on tropical climate variability is investigated in a coupled linear inverse model (LIM) derived from the simultaneous and 6-day lag covariances of observed 7-day running mean departures from the annual cycle. The model predicts the covariances at all other lags. The predicted and observed lag covariances, as well as the associated power spectra, are generally found to agree within sampling uncertainty. This validates the LIM’s basic premise that beyond daily time scales, the evolution of tropical atmospheric and oceanic anomalies is effectively linear and stochastically driven. It also justifies a linear diagnosis of air–sea coupling in the system. The results show that air–sea coupling has a very small effect on subseasonal atmospheric variability. It has much larger effects on longer-term variability, in both the atmosphere and the ocean, including greatly increasing the amplitude of ENSO and lengthening its dominant period from 2 to 4 years. Consistent with these...

[1]  Bin Wang,et al.  MJO Simulation Diagnostics , 2009 .

[2]  B. Kirtman,et al.  The Impact of Air–Sea Interactions on the Simulation of Tropical Intraseasonal Variability , 2008 .

[3]  G. Zhang,et al.  Energetics of Madden Julian Oscillations in the NCAR CAM3: A Composite View , 2008 .

[4]  James D. Scott,et al.  Forecasting Pacific SSTs: Linear Inverse Model Predictions of the PDO , 2008 .

[5]  M. Tippett,et al.  Pacific meridional mode and El Niño—Southern Oscillation , 2007 .

[6]  M. Newman,et al.  Tropical and Stratospheric Influences on Extratropical Short-Term Climate Variability , 2007 .

[7]  Frederic Vitart,et al.  Monthly Forecast of the Madden–Julian Oscillation Using a Coupled GCM , 2007 .

[8]  M. Newman Interannual to Decadal Predictability of Tropical and North Pacific Sea Surface Temperatures , 2007 .

[9]  A. Matthews,et al.  Observed Changes in the Lifetime and Amplitude of the Madden-Julian Oscillation Associated with Interannual ENSO Sea Surface Temperature Anomalies , 2007 .

[10]  Cécile Penland,et al.  Studies of El Niño and Interdecadal Variability in Tropical Sea Surface Temperatures Using a Nonnormal Filter , 2006 .

[11]  G. Kiladis,et al.  Observed Relationships between Oceanic Kelvin Waves and Atmospheric Forcing , 2006 .

[12]  R. Wu,et al.  Local Air–Sea Relationship in Observations and Model Simulations , 2006 .

[13]  M. Mcphaden,et al.  Large scale dynamics and MJO forcing of ENSO variability , 2006 .

[14]  Philip J. Rasch,et al.  Tropical Intraseasonal Variability in 14 IPCC AR4 Climate Models. Part I: Convective Signals , 2006 .

[15]  E. Maloney,et al.  Simulations of the Madden–Julian oscillation in four pairs of coupled and uncoupled global models , 2006 .

[16]  Harry H. Hendon,et al.  Seasonal Dependence of the MJO-ENSO Relationship , 2006 .

[17]  N. Lau,et al.  Modulation of the Madden-Julian Oscillation by ENSO: Inferences from Observations and GCM Simulations , 2005 .

[18]  Mingquan Mu,et al.  Simulation of the Madden–Julian Oscillation in the NCAR CCM3 Using a Revised Zhang–McFarlane Convection Parameterization Scheme , 2005 .

[19]  S. Gualdi,et al.  The Madden–Julian oscillation in ECHAM4 coupled and uncoupled general circulation models , 2005 .

[20]  C. Jones,et al.  The Role of Coupled Sea Surface Temperatures in the Simulation of the Tropical Intraseasonal Oscillation , 2004 .

[21]  S. Gualdi,et al.  The Madden-Julian Oscillation in ECHAM4 Coupled and Uncoupled GCMs , 2004 .

[22]  M. Wheeler,et al.  An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction , 2004 .

[23]  Thomas M. Hamill,et al.  Ensemble Reforecasting: Improving Medium-Range Forecast Skill Using Retrospective Forecasts , 2004 .

[24]  K. Arpe,et al.  The intraseasonal oscillation in ECHAM4 Part I: coupled to a comprehensive ocean model , 2004 .

[25]  M. Newman,et al.  Stratiform Precipitation, Vertical Heating Profiles, and the Madden Julian Oscillation , 2004 .

[26]  J. Wallace,et al.  The Seasonal Footprinting Mechanism in the Pacific: Implications for ENSO(. , 2003 .

[27]  Jeffrey S. Whitaker,et al.  A Study of Subseasonal Predictability , 2003 .

[28]  Andrew T. Wittenberg,et al.  How Predictable is El Niño , 2003 .

[29]  Peter M. Inness,et al.  Simulation of the Madden–Julian Oscillation in a Coupled General Circulation Model. Part I: Comparison with Observations and an Atmosphere-Only GCM , 2003 .

[30]  P. Inness Simulation of The Madden-julian Oscillation In A Coupled General Circulation Model , 2003 .

[31]  Chidong Zhang,et al.  SST Anomalies of ENSO and the Madden–Julian Oscillation in the Equatorial Pacific* , 2002 .

[32]  Thomas M. Smith,et al.  An Improved In Situ and Satellite SST Analysis for Climate , 2002 .

[33]  W. Kessler EOF Representations of the Madden–Julian Oscillation and Its Connection with ENSO* , 2001 .

[34]  E. Maloney,et al.  The Sensitivity of Intraseasonal Variability in the NCAR CCM3 to Changes in Convective Parameterization , 2001 .

[35]  Klaus M. Weickmann,et al.  Intraseasonal Air–Sea Interactions at the Onset of El Niño , 2001 .

[36]  Christopher R. Winkler,et al.  A Linear Model of Wintertime Low-Frequency Variability. Part I: Formulation and Forecast Skill , 2001 .

[37]  H. Hendon Impact of Air-Sea Coupling on the Madden-Julian Oscillation in a General Circulation Model , 2000 .

[38]  E. Sarachik,et al.  Seasonality in an Empirically Derived Markov Model of Tropical Pacific Sea Surface Temperature Anomalies , 2000 .

[39]  D. Battisti,et al.  A Linear Stochastic Dynamical Model of ENSO. Part I: Model Development , 2000 .

[40]  B. Hoskins,et al.  The Relationship between Convection and Sea Surface Temperature on Intraseasonal Timescales , 2000 .

[41]  N. Zeng,et al.  A Quasi-Equilibrium Tropical Circulation Model—Formulation * , 2000 .

[42]  James D. Scott,et al.  A linear diagnosis of the coupled extratropical ocean–atmosphere system in the GFDL GCM , 2000 .

[43]  T. DelSole,et al.  Empirical Stochastic Models for the Dominant Climate Statistics of a General Circulation Model , 1999 .

[44]  R. Weisberg,et al.  Effects of the Wind Speed–Evaporation–SST Feedback on the El Niño–Southern Oscillation , 1999 .

[45]  G. V. Oldenborgh What Caused the Onset of the 1997-98 El Nino ? , 1999, physics/9904002.

[46]  M. Mcphaden,et al.  Genesis and evolution of the 1997-98 El Nino , 1999, Science.

[47]  Harry H. Hendon,et al.  Intraseasonal Variability of Surface Fluxes and Sea Surface Temperature in the Tropical Western Pacific and Indian Oceans , 1998 .

[48]  Cécile Penland,et al.  Prediction of Tropical Atlantic Sea Surface Temperatures Using Linear Inverse Modeling , 1998 .

[49]  M. J. OrtizBevia,et al.  Estimation of the cyclostationary dependence in geophysical data fields , 1997 .

[50]  Fei-Fei Jin,et al.  An Equatorial Ocean Recharge Paradigm for ENSO. Part I: Conceptual Model , 1997 .

[51]  Fei-Fei Jin,et al.  An Equatorial Ocean Recharge Paradigm for ENSO. Part II: A Stripped-Down Coupled Model , 1997 .

[52]  Cécile Penland,et al.  A stochastic model of IndoPacific sea surface temperature anomalies , 1996 .

[53]  P. Sardeshmukh,et al.  Barotropic Rossby Wave Dynamics of Zonally Varying Upper-Level Flows during Northern Winter , 1995 .

[54]  Prashant D. Sardeshmukh,et al.  The Optimal Growth of Tropical Sea Surface Temperature Anomalies , 1995 .

[55]  M. Mcphaden,et al.  Forcing of intraseasonal Kelvin waves in the equatorial Pacific , 1995 .

[56]  Cécile Penland,et al.  A Balance Condition for Stochastic Numerical Models with Application to the El Niño-Southern Oscillation , 1994 .

[57]  P. Chang A study of the seasonal cycle of sea surface temperature in the tropical Pacific Ocean using reduced gravity models , 1994 .

[58]  J. David Neelin,et al.  Modes of Interannual Tropical Ocean–Atmosphere Interaction—a Unified View. Part II: Analytical Results in the Weak-Coupling Limit , 1993 .

[59]  Michael Ghil,et al.  Forecasting Northern Hemisphere 700-mb Geopotential Height Anomalies Using Empirical Normal Modes , 1993 .

[60]  P. Sardeshmukh The baroclinic χ problem and its application to the diagnosis of atmospheric heating rates , 1993 .

[61]  Cécile Penland,et al.  Random Forcing and Forecasting Using Principal Oscillation Pattern Analysis , 1989 .

[62]  Anthony C. Hirst,et al.  Interannual variability in a tropical atmosphere−ocean model: influence of the basic state, ocean geometry and nonlinearity , 1989 .

[63]  Hans von Storch,et al.  Principal oscillation pattern analysis of the 30‐ to 60‐day oscillation in general circulation model equatorial troposphere , 1988 .

[64]  K. Hasselmann PIPs and POPs: The reduction of complex dynamical systems using principal interaction and oscillation patterns , 1988 .

[65]  Max J. Suarez,et al.  Vacillations in a Coupled Ocean–Atmosphere Model , 1988 .

[66]  Brian F. Farrell,et al.  Optimal Excitation of Neutral Rossby Waves , 1988 .

[67]  Klaus M. Weickmann,et al.  30–60 Day Atmospheric Oscillations: Composite Life Cycles of Convection and Circulation Anomalies , 1987 .

[68]  M. Cane,et al.  A Theory for El Ni�o and the Southern Oscillation , 1985, Science.

[69]  W. L. Culberson,et al.  Lichen biology: biology of lichenized fungi. , 1985, Science.

[70]  Prashant D. Sardeshmukh,et al.  Spatial Smoothing on the Sphere , 1984 .

[71]  J. Bjerknes ATMOSPHERIC TELECONNECTIONS FROM THE EQUATORIAL PACIFIC1 , 1969 .

[72]  M.,et al.  Estimation of the cyclostationary dependence in geophysical data fields , 2007 .

[73]  Zavala,et al.  The Linear Response of ENSO to the Madden – Julian Oscillation , 2005 .