Plug-In Hybrid Electric Vehicle Battery Selection for Optimum Economic and Environmental Benefits Using Pareto Set Points and PSAT™

Plug-in hybrid electric vehicles (PHEVs) have the potential to reduce green house gases emissions and provide a promising alternative to conventional internal combustion engine vehicles. However, PHEVs have not been widely adopted in comparison to the conventional vehicles due to their high costs and short charging intervals. Since PHEVs rely on large storage batteries relative to the conventional vehicles, the characteristics and design issues associated with PHEV batteries play an important role in the potential adoption of PHEVs. Consumer acceptance and adoption of PHEVs mainly depends on fuel economy, operating cost, operation green house gas (GHG) emissions, power and performance, and safety among other characteristics. We compare the operational performance of PHEV20 (PHEV version sized for 20 miles of all electric range) based on fuel economy, operating cost, and greenhouse gas (GHG) emissions through Pareto set point identification approach for 15 different types of batteries, including lithium-ion, nickel metal hydride (NiMH), nickel zinc (NiZn), and lead acid batteries. It is found that two from 15 batteries dominate the rest. Among the two, a NiMH (type ess_nimh_90_72_ovonic) gives the highest fuel economy, and a lithium-ion (type ess_li_7_303) yields the lowest operating cost and GHG emissions. From comparing nine batteries that are either on or close to the Pareto frontier, one can see that lithium-ion and NiMH batteries offer better fuel economy than lead-acid batteries. Though lithium-ion batteries bear clear advantage on operating costs and GHG emissions, NiMH and lead-acid batteries show similar performances from these two aspects.Copyright © 2010 by ASME