Development and Scale-Up of the Electrochemical Dehalogenation for the Synthesis of a Key Intermediate for NS5A Inhibitors

The electrochemical 2-fold dehalogenation of a spirocyclopropane-proline derivative at leaded bronze was scaled-up in a divided batch-type electrolysis cell in good yield and excellent selectivity. The upscaling via a flow electrolysis cell was also successful. Conditions were elaborated employing a single cell passage for complete conversion. The keys here are the direct cooling of the cathode and ensuring a good laminar flow.

[1]  S. Waldvogel,et al.  Electrochemical Deoxygenation of Aromatic Amides and Sulfoxides , 2014 .

[2]  S. Waldvogel,et al.  Renaissance of electrosynthetic methods for the construction of complex molecules. , 2014, Angewandte Chemie.

[3]  G. Zon,et al.  Stereochemistry of electroreductions. II. Geminal dihalocyclopropanes , 1969 .

[4]  A. Tallec,et al.  Electroreduction of optically active 1-bromo 1-carbomethoxy-2,2-diphenylcyclopropane: Factors influencing stereoselectivity , 1980 .

[5]  M. Mubarak,et al.  Electrochemical Reduction of 1-Halooctanes at Platinized Platinum Electrodes in Dimethylformamide Containing Tetramethylammonium Tetrafluoroborate , 2006 .

[6]  E. Steckhan,et al.  Environmental protection and economization of resources by electroorganic and electroenzymatic syntheses. , 2001, Chemosphere.

[7]  H. Schäfer,et al.  Electrolysis for the benign conversion of renewable feedstocks , 2007 .

[8]  M. Desai,et al.  Discovery of ledipasvir (GS-5885): a potent, once-daily oral NS5A inhibitor for the treatment of hepatitis C virus infection. , 2014, Journal of medicinal chemistry.

[9]  Hans J. Schäfer,et al.  Contributions of organic electrosynthesis to green chemistry , 2011 .

[10]  A. Fry,et al.  Stereoselective electrochemical reduction of geminal dihalocyclopropanes , 1968 .

[11]  S. Waldvogel,et al.  Stabilizing Lead Cathodes with Diammonium Salt Additives in the Deoxygenation of Aromatic Amides , 2014 .

[12]  S. Waldvogel,et al.  Stereoselective cathodic synthesis of 8-substituted (1R,3R,4S)-menthylamines , 2015, Beilstein journal of organic chemistry.

[13]  Dieter Schollmeyer,et al.  Metal- and reagent-free highly selective anodic cross-coupling reaction of phenols. , 2014, Angewandte Chemie.

[14]  Philipp W. Raess,et al.  Catalytic reduction of 1-iodooctane by nickel(I) salen electrogenerated at carbon cathodes in dimethylformamide: Effects of added proton donors and a mechanism involving both metal- and ligand-centered one-electron reduction of nickel(II) salen , 2007 .

[15]  Siegfried R. Waldvogel,et al.  Effiziente und stereodivergierende elektrochemische Synthese von optisch reinen Menthylaminen , 2011 .

[16]  Kent J. Griffith,et al.  Electrochemistry of substituted salen complexes of nickel(II): Nickel(I)-catalyzed reduction of alkyl and acetylenic halides , 2010 .

[17]  Jun-ichi Yoshida,et al.  Modern strategies in electroorganic synthesis. , 2008, Chemical reviews.

[18]  Dieter Schollmeyer,et al.  Metall‐ und reagensfreie hochselektive anodische Kreuzkupplung von Phenolen , 2014 .

[19]  B. Frontana‐Uribe,et al.  Organic electrosynthesis: a promising green methodology in organic chemistry , 2010 .

[20]  S. Waldvogel,et al.  Efficient and stereodivergent electrochemical synthesis of optically pure menthylamines. , 2011, Angewandte Chemie.

[21]  Fabrice Gallou,et al.  A Novel Cathode Material for Cathodic Dehalogenation of 1,1-Dibromo Cyclopropane Derivatives. , 2015, Chemistry.

[22]  C. Mann,et al.  Cyclopropanes. XXVI. Electrolytic reduction of optically active 1-halo-1-methyl-2,2-diphenylcyclopropanes , 1970 .

[23]  A. Fry,et al.  Electrochemical reduction of stereoisomeric geminal dihalonorbornanes , 1972 .

[24]  Paul Anastas,et al.  Green chemistry: principles and practice. , 2010, Chemical Society reviews.

[25]  Roger A. Sheldon,et al.  The E Factor: fifteen years on , 2007 .