Functional materials with high-efficiency energy storage and conversion for batteries and fuel cells

Electrochemical energy storage and conversion with high efficiency and cleanliness is unquestionably one challenge for the sustainable development of the society of human beings. The functional materials can be applied in the systems of electrochemical energy storage and conversion such as in the fields of batteries and fuel cells. For the aspect of energy storage, high efficiency is closely connected with lightweight and high energy density materials, such as hydrogen, lithium, and magnesium. While for energy conversion, two major problems exist namely the diffusion/migration of ions and the transportation of electrons. The properties of the corresponding materials directly affect the solution of these challenges. Thus, in this review we concentrate on the crystal structures and the properties of functional materials applied in electrochemical energy storage and conversion systems with selected primary and secondary batteries and hydrogen fuel cells. In particular, the design, synthesis, structure and property of the materials, containing (1) cathode, anode and electrolyte for non-aqueous Li/Li+; (2) various Mg, MgxMo6S8 (0 < x < 2) Chevrel phase cathode and electrolyte solutions for primary and secondary Mg batteries; (3) proton exchange membranes, electrode catalysts, hydrogen production and storage for aqueous H2(H)/H+ fuel cells. The advantages and disadvantages involved in the batteries and fuel cells using functional materials are also discussed.

[1]  Y. Xing,et al.  Polymer-mediated synthesis of highly dispersed Pt nanoparticles on carbon black. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[2]  Kondo-Francois Aguey-Zinsou,et al.  Synthesis of Colloidal Magnesium: A Near Room Temperature Store for Hydrogen , 2008 .

[3]  C. Howard,et al.  Powder Neutron Diffraction Study of Pyrolusite, β-MnO2 , 1993 .

[4]  D. C. Trivedi,et al.  Chemical and electrochemical depositions of platinum group metals and their applications , 2005 .

[5]  A. Juan,et al.  A theoretical study of the electronic structure and bonding of the monoclinic phase of Mg2NiH4 , 2007 .

[6]  D. Linden Handbook Of Batteries , 2001 .

[7]  J. Erlebacher,et al.  Platinum-plated nanoporous gold : An efficient, low Pt loading electrocatalyst for PEM fuel cells , 2007 .

[8]  G. Cao,et al.  Dependence of electrochemical properties of vanadium oxide films on their nano- and microstructures. , 2005, The journal of physical chemistry. B.

[9]  P. Bruce,et al.  Increasing the conductivity of crystalline polymer electrolytes , 2005, Nature.

[10]  M. Armand,et al.  Anions of low Lewis basicity for ionic solid state electrolytes , 2002 .

[11]  Viral S. Mehta,et al.  Review and analysis of PEM fuel cell design and manufacturing , 2003 .

[12]  A. F. Williams,et al.  Dimagnesium iron(II) hydride, Mg2FeH6, containing octahedral FeH64- anions , 1984 .

[13]  Henrietta W. Langmi,et al.  Non-hydride systems of the main group elements as hydrogen storage materials , 2007 .

[14]  D. Aurbach,et al.  On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions , 1999 .

[15]  A. Mitelman,et al.  Progress in Rechargeable Magnesium Battery Technology , 2007 .

[16]  Linda F. Nazar,et al.  Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries , 2007 .

[17]  Jin-Song Hu,et al.  Pt hollow nanospheres: facile synthesis and enhanced electrocatalysts. , 2004, Angewandte Chemie.

[18]  M. Hickner,et al.  Alternative polymer systems for proton exchange membranes (PEMs). , 2004, Chemical reviews.

[19]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[20]  Jun Chen,et al.  Storage of hydrogen and lithium in inorganic nanotubes and nanowires , 2006 .

[21]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[22]  F. Gloaguen,et al.  Catalysis of the electrochemical H2 evolution by di-iron sub-site models , 2005 .

[23]  John O. Thomas,et al.  Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mossbauer spectroscopy study , 2000 .

[24]  Jun Chen,et al.  Magnesium nanowires: enhanced kinetics for hydrogen absorption and desorption. , 2007, Journal of the American Chemical Society.

[25]  David Wexler,et al.  Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. , 2006, Angewandte Chemie.

[26]  D. Ginley,et al.  Nanostructured MnO2 for Li batteries , 2003 .

[27]  Zhong Lin Wang,et al.  Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity , 2007, Science.

[28]  Jun Chen,et al.  Nest‐like Silicon Nanospheres for High‐Capacity Lithium Storage , 2007 .

[29]  Feng Jiao,et al.  Mesoporous Crystalline β‐MnO2—a Reversible Positive Electrode for Rechargeable Lithium Batteries , 2007 .

[30]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[31]  Can Li,et al.  Importance of the relationship between surface phases and photocatalytic activity of TiO2. , 2008, Angewandte Chemie.

[32]  Robert A. Huggins,et al.  All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix , 1981 .

[33]  Proton exchange membranes based on sulfonated crosslinked polystyrene micro particles dispersed in poly(dimethyl siloxane) , 2006 .

[34]  Nikhil H. Jalani,et al.  Consideration of thermodynamic, transport, and mechanical properties in the design of polymer electrolyte membranes for higher temperature fuel cell operation , 2006 .

[35]  D. Aurbach,et al.  Phase Diagram of Mg Insertion into Chevrel Phases, MgxMo6T8 (T = S, Se). 1. Crystal Structure of the Sulfides , 2006 .

[36]  Jeff Dahn,et al.  Lithium Insertion in Carbons Containing Nanodispersed Silicon , 1995 .

[37]  Robert Dominko,et al.  Improved Electrode Performance of Porous LiFePO4 Using RuO2 as an Oxidic Nanoscale Interconnect , 2007 .

[38]  Jing Liang,et al.  Template-Directed Materials for Rechargeable Lithium-Ion Batteries† , 2008 .

[39]  Lei Zhang,et al.  Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions , 2006 .

[40]  M. G. Norton,et al.  Advances in the application of nanotechnology in enabling a ‘hydrogen economy’ , 2008 .

[41]  Frano Barbir,et al.  Status and development of PEM fuel cell technology , 2008 .

[42]  Xuan Cheng,et al.  A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation , 2007 .

[43]  Robert B. Moore,et al.  State of understanding of nafion. , 2004, Chemical reviews.

[44]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[45]  W. Grochala,et al.  Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. , 2004, Chemical reviews.

[46]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[47]  Jun Chen,et al.  Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. , 2006, Inorganic chemistry.

[48]  Nikhil H. Jalani,et al.  The effect of equivalent weight, temperature, cationic forms, sorbates, and nanoinorganic additives on the sorption behavior of Nafion ® , 2005 .

[49]  Bruno Scrosati,et al.  High‐Rate, Long‐Life Ni–Sn Nanostructured Electrodes for Lithium‐Ion Batteries , 2007 .

[50]  Jun Chen,et al.  Metallic magnesium nano/mesoscale structures: their shape-controlled preparation and mg/air battery applications. , 2006, Angewandte Chemie.

[51]  A. V. van Duin,et al.  ReaxFF(MgH) reactive force field for magnesium hydride systems. , 2005, The journal of physical chemistry. A.

[52]  Justin C. Lytle,et al.  Photonic Crystal Structures as a Basis for a Three‐Dimensionally Interpenetrating Electrochemical‐Cell System , 2006 .

[53]  A. Seayad,et al.  Recent Advances in Hydrogen Storage in Metal‐Containing Inorganic Nanostructures and Related Materials , 2004 .

[54]  K.H.J. Buschow,et al.  Encyclopedia of Materials: Science and Technology , 2004 .

[55]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[56]  Ravindra Datta,et al.  Synthesis and characterization of Nafion®-MO2 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells , 2005 .

[57]  Omar M Yaghi,et al.  Exceptional H2 saturation uptake in microporous metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[58]  Ying Wang,et al.  Developments in Nanostructured Cathode Materials for High‐Performance Lithium‐Ion Batteries , 2008 .

[59]  Janusz Nowotny,et al.  Titanium dioxide for solar-hydrogen I. Functional properties , 2007 .

[60]  P. Fischer,et al.  Dimagnesium cobalt(I) pentahydride, Mg2CoH5, containing square-pyramidal pentahydrocobaltate(4-) (CoH54-) anions , 1985 .

[61]  M. Fontecave,et al.  Some general principles for designing electrocatalysts with hydrogenase activity , 2005 .

[62]  Haoshen Zhou,et al.  A self-ordered, crystalline-glass, mesoporous nanocomposite for use as a lithium-based storage device with both high power and high energy densities. , 2005, Angewandte Chemie.

[63]  Jun Chen,et al.  Electrocatalytic Methanol Oxidation of Pt0.5Ru0.5-xSnx/C (x = 0−0.5) , 2008 .

[64]  P. Bruce,et al.  Ionic conductivity in crystalline polymer electrolytes , 2001, Nature.

[65]  N. Papageorgiou,et al.  Counter-electrode function in nanocrystalline photoelectrochemical cell configurations , 2004 .

[66]  M. Soriaga,et al.  Grignard reagent formation , 2004 .

[67]  J. H. van Lenthe,et al.  Hydrogen storage in magnesium clusters: quantum chemical study. , 2005, Journal of the American Chemical Society.

[68]  K. Sakai,et al.  Homogeneous catalysis of platinum(II) complexes in photochemical hydrogen production from water , 2007 .

[69]  B. Scrosati,et al.  Advances in lithium-ion batteries , 2002 .

[70]  Xiaojing Yang,et al.  Preparation of a Polycation-Intercalated Layered Manganese Oxide Nanocomposite by a Delamination/Reassembling Process , 2002 .

[71]  Steen B. Schougaard,et al.  Conducting‐Polymer/Iron‐Redox‐ Couple Composite Cathodes for Lithium Secondary Batteries , 2007 .

[72]  A. Züttel,et al.  Complex hydrides for hydrogen storage. , 2007, Chemical reviews.

[73]  K. Sanui,et al.  Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers , 2000 .

[74]  Andrew B. Bocarsly,et al.  Mechanical properties of Nafion and titania/Nafion composite membranes for polymer electrolyte membrane fuel cells , 2006 .

[75]  Jun Chen,et al.  α‐Fe2O3 Nanotubes in Gas Sensor and Lithium‐Ion Battery Applications , 2005 .

[76]  J. S. Liu,et al.  First-principles investigation of Mg2Ni phase and high/low temperature Mg2NiH4 complex hydrides , 2009 .

[77]  Jun Chen,et al.  Studies on the Hydrogen Storage of Magnesium Nanowires by Density Functional Theory , 2009 .

[78]  Hubert A. Gasteiger,et al.  Handbook of fuel cells : fundamentals technology and applications , 2003 .

[79]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[80]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.