Thermal conductivity anisotropy and grain structure in Ge2Sb2Te5 films

Although lateral thermal conduction in Ge2Sb2Te5 (GST) films can influence the performance of phase change memory (PCM), there are no data available for the in-plane thermal conductivity. This work measures both the in-plane and the out-of-plane thermal conductivities for the amorphous, face-centered-cubic, and hexagonal-close-packed phases of GST using two independent techniques. For crystalline GST, we report anisotropy favoring out-of-plane conduction by up to 54%, which varies with annealing time. Scaling arguments indicate that the anisotropy may be due to the thermal resistance of amorphous regions near grain boundaries. This explanation is consistent with transmission electron microscopy images showing columnar grains and amorphous phase at grain boundaries.

[1]  S. Lombardo,et al.  Amorphous to fcc-polycrystal transition in Ge2Sb2Te5 thin films studied by electrical measurements: Data analysis and comparison with direct microscopy observations , 2009 .

[2]  Eric Pop,et al.  Thickness and stoichiometry dependence of the thermal conductivity of GeSbTe films , 2007 .

[3]  A. Pirovano,et al.  Scaling analysis of phase-change memory technology , 2003, IEEE International Electron Devices Meeting 2003.

[4]  S. Lombardo,et al.  Amorphous-fcc transition in Ge2Sb2Te5 , 2010 .

[5]  J. Battaglia,et al.  Thermal characterization of the SiO2-Ge2Sb2Te5 interface from room temperature up to 400 °C , 2010 .

[6]  S. M. Lee,et al.  Thermal boundary resistance at Ge2Sb2Te5/ZnS:SiO2 interface , 2000 .

[7]  Simone Raoux,et al.  Thermal conductivities and phase transition temperatures of various phase-change materials measured by the 3ω method , 2009 .

[8]  D. Cahill Thermal conductivity measurement from 30 to 750 K: the 3ω method , 1990 .

[9]  M. Asheghi,et al.  Measurement of the thermal conductivity anisotropy in polyimide films , 1999 .

[10]  Kenneth E. Goodson,et al.  Process-dependent thermal transport properties of silicon-dioxide films deposited using low-pressure chemical vapor deposition , 1999 .

[11]  Myong R. Kim,et al.  Crystallization behavior of sputter-deposited amorphous Ge2Sb2Te5 thin films , 1999 .

[12]  Albert Feldman,et al.  Application of the three omega thermal conductivity measurement method to a film on a substrate of finite thickness , 1999 .

[13]  M. Lankhorst,et al.  Low-cost and nanoscale non-volatile memory concept for future silicon chips , 2005, Nature materials.

[14]  J. Cluzel,et al.  Thermal characterization and analysis of phase change random access memory , 2005 .

[15]  Effect of Doped Nitrogen on the Crystallization Behaviors of Ge2Sb2Te5 , 2010 .

[16]  F. Merget,et al.  Lateral phase change random access memory cell design for low power operation , 2006 .

[17]  T. Yagi,et al.  Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon , 2007 .

[18]  S. G. Bishop,et al.  Thermal conductivity of phase-change material Ge2Sb2Te5 , 2006 .

[19]  K. Goodson,et al.  The Impact of Thermal Boundary Resistance in Phase-Change Memory Devices , 2008, IEEE Electron Device Letters.

[20]  C. Peng,et al.  Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media , 1997 .

[21]  J. Graebner,et al.  Large anisotropic thermal conductivity in synthetic diamond films , 1992, Nature.

[22]  Phase transformation behaviors of SiO2 doped Ge2Sb2Te5 films for application in phase change random access memory , 2008 .

[23]  V. Weidenhof,et al.  Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements , 2000 .

[24]  F. Yan,et al.  Study on the crystallization by an electrical resistance measurement in Ge2Sb2Te5 and N-doped Ge2Sb2Te5 films , 2007 .

[25]  Gang Chen,et al.  1ω,2ω, and 3ω methods for measurements of thermal properties , 2005 .

[26]  Sumio Hosaka,et al.  Electrical Properties of Phase Change and Channel Current Control in Ultrathin Phase-Change Channel Transistor Memory by Annealing , 2006 .

[27]  W. L. Liu,et al.  Anisotropic thermal conductivity of Ge quantum-dot and symmetrically strained Si/Ge superlattices. , 2001, Journal of nanoscience and nanotechnology.

[28]  M. Wuttig,et al.  Crystalline phases in the GeSb2Te4 alloy system: Phase transitions and elastic properties , 2007 .

[29]  A. Feldman Algorithm for solutions of the thermal diffusion equation in a stratified medium with a modulated heating source , 1996 .

[30]  A. Petford-Long,et al.  Determination of the isothermal nucleation and growth parameters for the crystallization of thin Ge2Sb2Te5 films , 2002 .

[31]  Jean-Luc Battaglia,et al.  Thermal and Electrical Characterization of Materials for Phase-Change Memory Cells† , 2009 .