A configurable dual moduli multi-operand modulo adder
暂无分享,去创建一个
[1] Chip-Hong Chang,et al. A new formulation of fast diminished-one multioperand modulo 2/sup n/+1 adder , 2005, 2005 IEEE International Symposium on Circuits and Systems.
[2] Stanislaw J. Piestrak. Design of Residue Generators and Multioperand Modular Adders Using Carry-Save Adders , 1994, IEEE Trans. Computers.
[3] L. Leibowitz. A simplified binary arithmetic for the Fermat number transform , 1976 .
[4] G.C. Cardarilli,et al. Residue number system reconfigurable datapath , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).
[5] Chip-Hong Chang,et al. An efficient reverse converter for the 4-moduli set {2/sup n/ - 1, 2/sup n/, 2/sup n/ + 1, 2/sup 2n/ + 1} based on the new Chinese remainder theorem , 2003 .
[6] Costas Efstathiou,et al. Area-time efficient modulo 2/sup n/-1 adder design , 1994 .
[7] Kai Hwang,et al. Computer arithmetic: Principles, architecture, and design , 1979 .
[8] C. Efstathiou,et al. AREA-TIME EFFICIENT MODULO 2N-1 ADDER DESIGN , 1994 .
[9] P. V. Mohan,et al. Residue Number Systems: Algorithms and Architectures , 2011 .
[10] G. Jullien,et al. An algorithm for multiplication modulo (2/spl and/N-1) , 1996, Proceedings of the 39th Midwest Symposium on Circuits and Systems.
[11] Chip-Hong Chang,et al. An Efficient Reverse Converter for the 4-Moduli Set 2 n 1 , 2 n , 2 n + 1 , 22 n + 1 Based on the New Chinese Remainder Theorem , 2001 .
[12] Reto Zimmermann,et al. Efficient VLSI implementation of modulo (2/sup n//spl plusmn/1) addition and multiplication , 1999, Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336).
[13] Haridimos T. Vergos,et al. Diminished-One Modulo 2n+1 Adder Design , 2002, IEEE Trans. Computers.
[14] A. Skavantzos. Design of multioperand carry-save adders for arithmetic modulo (2/sup n/+1) , 1989 .