Comparing Invariants for Class Fields of Imaginary Quadratic Fields

Class fields of imaginary quadratic number fields can be constructed from singular values of modular functions, called class invariants. From a computational point of view, it is desirable that the associated minimal polynomials be small. We examine different approaches to measure the size of the polynomials. Based on experimental evidence, we compare two families of class invariants suggested in the literature with respect to these criteria. Our results lead to more efficient constructions of elliptic curves for cryptography or in the context of elliptic curve primality proving (ECPP).

[1]  J. Silverman Advanced Topics in the Arithmetic of Elliptic Curves , 1994 .

[2]  Don Zagier,et al.  On the singular values of Weber modular functions , 1997, Math. Comput..

[3]  Felix Klein,et al.  Ueber die Transformation der elliptischen Functionen und die Auflösung der Gleichungen fünften Grades , 1878 .

[4]  Marvin Tretkoff,et al.  Introduction to the Arithmetic Theory of Automorphic Functions , 1971 .

[5]  Jonathan M. Borwein,et al.  Pi and the AGM , 1999 .

[6]  B. J. Birch,et al.  Weber's class invariants , 1969 .

[7]  Reinhard Schertz,et al.  Weber's class invariants revisited , 2002 .

[8]  Reinhard Schertz,et al.  Zur expliziten berechnung von ganzheitsbasen in strahlklassenkörpern über einem imaginär-quadratischen zahlkörper , 1990 .

[9]  Joseph H. Silverman,et al.  Diophantine Geometry: An Introduction , 2000, The Mathematical Gazette.

[10]  H. M. Stark,et al.  Counting Points on $CM$ Elliptic Curves , 1996 .

[11]  Reinhard Schertz,et al.  Die singulären Werte der Weberschen Funktionen f, f1, f2, 2, 3. , 1976 .

[12]  Guillaume Hanrot,et al.  Solvability by radicals from an algorithmic point of view , 2001, ISSAC '01.

[13]  Joseph H. Silverman,et al.  The arithmetic of elliptic curves , 1986, Graduate texts in mathematics.

[14]  C. Jacobi,et al.  Fundamenta nova theoriae functionum ellipticarum , 1829 .

[15]  François Morain,et al.  Primality Proving Using Elliptic Curves: An Update , 1998, ANTS.

[16]  Curt Meyer,et al.  Bemerkungen zum Satz von Heegner-Stark über die imaginär-quadratischen Zahlkörper mit der Klassenzahl Eins. , 1970 .

[17]  Leo . Koenigsberger,et al.  Carl Gustav Jacob Jacobi , 2022 .

[18]  Françoise Morain Calcul du nombre de points sur une courbe elliptique dans un corps fini : aspects algorithmiques , 1995 .

[19]  Peter Stevenhagen,et al.  Generating Class Fields using Shimura Reciprocity , 1998, ANTS.

[20]  H. Weber Lehrbuch der algebra , 1921 .

[21]  A. Atkin,et al.  ELLIPTIC CURVES AND PRIMALITY PROVING , 1993 .

[22]  A. Gee,et al.  Class invariants by Shimura's reciprocity law , 1999 .