A modal-based multiscale method for large eddy simulation

We introduce a modal spectral element method which employs the variational multiscale approach for large eddy simulation. The method is sufficiently general for application to complex flow geometries, but requires relatively few degrees of freedom for a given mesh and polynomial order. We investigate the performance of the method for fully-developed turbulent channel flow. It is shown that large increases in accuracy can be obtained when the basic dynamics of near-wall coherent structures can be represented using the portion of the modal basis which is free of the subgrid-scale model. This implies that in spite of its lack of orthogonality, the modal basis provides sufficient scale separation to exploit the advantages of the variational multiscale approach.

[1]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[2]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[3]  T. Hughes,et al.  The variational multiscale formulation of LES - Channel Flow at Re(sub tau) = 590 , 2002 .

[4]  Samuel Scott Collis,et al.  The Local Variational Multiscale Method , 2005 .

[5]  Thomas J. R. Hughes,et al.  The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .

[6]  F. Shakib Finite element analysis of the compressible Euler and Navier-Stokes equations , 1989 .

[7]  H. Schlichting Boundary Layer Theory , 1955 .

[8]  T. Hughes,et al.  Variational and Multiscale Methods in Turbulence , 2005 .

[9]  Srinivas Ramakrishnan,et al.  Turbulence control simulation using the variational multiscale method , 2004 .

[10]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[11]  A. W. Vreman The filtering analog of the variational multiscale method in large-eddy simulation , 2003 .

[12]  Srinivas Ramakrishnan,et al.  Multiscale Modeling for Turbulence Simulation in Complex Geometries , 2004 .

[13]  P. Moin,et al.  Turbulence statistics in fully developed channel flow at low Reynolds number , 1987, Journal of Fluid Mechanics.

[14]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[15]  S. Scott Collis,et al.  Discontinuous Galerkin Methods for Compressible DNS , 2003 .

[16]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[17]  Charbel Farhat,et al.  A Variational Multiscale Method for the Large Eddy Simulation of Compressible Turbulent Flows on Unstructured Meshes - Application to vortex shedding , 2004 .

[18]  S. Scott Collis,et al.  The DG/VMS Method for Unified Turbulence Simulation , 2002 .

[19]  Samuel Scott Collis,et al.  The Local Variational Multiscale Method for Turbulence Simulation. , 2005 .

[20]  Thomas J. R. Hughes,et al.  Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .

[21]  Thomas J. R. Hughes,et al.  A space-time formulation for multiscale phenomena , 1996 .

[22]  Wen-Ping Wang,et al.  Coupled compressible and incompressible finite volume formulations for the large eddy simulation of turbulent flow with and without heat transfer , 1995 .

[23]  Thomas J. R. Hughes,et al.  A comparative study of different sets of variables for solving compressible and incompressible flows , 1998 .

[24]  S. Collis,et al.  Partition selection in multiscale turbulence modeling , 2006 .

[25]  E. A. Munts Space-time multiscale methods for Large Eddy Simulation , 2006 .

[26]  S. Collis,et al.  Monitoring unresolved scales in multiscale turbulence modeling , 2001 .

[27]  U. Piomelli,et al.  Subgrid-Scale Models for Compressible Large-Eddy Simulations , 2000 .