G A ] 1 0 O ct 2 01 7 Tidally disrupted dusty clumps as the origin of broad emission lines in active galactic nuclei

Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049, China School of Astronomy and Space Science, School of Physical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China National Astronomical Observatories of China, Chinese Academy of Sciences, 20A Datun Road, Beijing 100020, China Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071, USA School of Astronomy and Space Science, Nanjing University, Nanjing 210093, China

[1]  R. Riffel,et al.  Probing the active galactic nucleus unified model torus properties in Seyfert galaxies , 2016, 1609.08972.

[2]  Kohei Ichikawa,et al.  Investigating the dusty torus of Seyfert galaxies using SOFIA/FORCAST photometry , 2016, 1607.07918.

[3]  E. Hatziminaoglou,et al.  The near-to-mid infrared spectrum of quasars , 2016, 1605.04867.

[4]  H. Netzer Revisiting the Unified Model of Active Galactic Nuclei , 2015, 1505.00811.

[5]  A. Ramos,et al.  THE DIFFERENCES IN THE TORUS GEOMETRY BETWEEN HIDDEN AND NON-HIDDEN BROAD LINE ACTIVE GALACTIC NUCLEI , 2015, 1501.06584.

[6]  P. Lira,et al.  MODELING THE NUCLEAR INFRARED SPECTRAL ENERGY DISTRIBUTION OF TYPE II ACTIVE GALACTIC NUCLEI , 2013, 1301.7000.

[7]  U. L. Laguna,et al.  THE CENTRAL MOLECULAR GAS STRUCTURE IN LINERS WITH LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI: EVIDENCE FOR GRADUAL DISAPPEARANCE OF THE TORUS , 2012, 1301.1679.

[8]  J. Baldwin,et al.  STAR FORMATION IN SELF-GRAVITATING DISKS IN ACTIVE GALACTIC NUCLEI. II. EPISODIC FORMATION OF BROAD-LINE REGIONS , 2012, 1202.0062.

[9]  H. Netzer,et al.  Hot graphite dust and the infrared spectral energy distribution of active galactic nuclei , 2011, 1110.5326.

[10]  P. Hopkins,et al.  The origins of active galactic nuclei obscuration: the ‘torus’ as a dynamical, unstable driver of accretion , 2011, 1108.3086.

[11]  R. Maiolino,et al.  The mass-metallicity relation of SDSS quasars , 2010, 1011.5811.

[12]  M. Elitzur,et al.  DUSTY STRUCTURE AROUND TYPE-I ACTIVE GALACTIC NUCLEI: CLUMPY TORUS NARROW-LINE REGION AND NEAR-NUCLEUS HOT DUST , 2009, 0907.1654.

[13]  L. Ho,et al.  Hβ Profiles in Quasars: Evidence for an Intermediate-Line Region , 2008, 0807.2060.

[14]  L. Ho,et al.  A Systematic Analysis of Fe II Emission in Quasars: Evidence for Inflow to the Central Black Hole , 2008, 0807.2059.

[15]  Yue Shen,et al.  SPACE DENSITY OF OPTICALLY SELECTED TYPE 2 QUASARS , 2008, 0801.1115.

[16]  G. Richards,et al.  Biases in Virial Black Hole Masses: An SDSS Perspective , 2007, 0709.3098.

[17]  R. Narayan,et al.  Thermal X-Ray Iron Line Emission from the Galactic Center Black Hole Sagittarius A* , 2005, astro-ph/0511590.

[18]  What controls the C iv line profile in active galactic nuclei , 2004, astro-ph/0409196.

[19]  M. Dietrich,et al.  A Relation between Supermassive Black Hole Mass and Quasar Metallicity? , 2003, astro-ph/0307247.

[20]  Ž. Ivezić,et al.  Dust Emission from Active Galactic Nuclei , 2002, astro-ph/0202405.

[21]  J. Baldwin,et al.  Metallicities and Abundance Ratios from Quasar Broad Emission Lines , 2001, astro-ph/0109006.

[22]  B. Vollmer,et al.  Turbulent viscosity in clumpy accretion disks - Application to the Galaxy , 2001, astro-ph/0111411.

[23]  M. Dopita,et al.  Cooling functions for low-density astrophysical plasmas , 1993 .

[24]  G. Ferland,et al.  What heats the hot phase in active nuclei , 1987 .

[25]  C. Gaskell Redshift difference between high and low ionization emission-line regions in QSOS-evidence for radial motions , 1982 .

[26]  L. Cowie,et al.  The evaporation of spherical clouds in a hot gas. I - Classical and saturated mass loss rates , 1977 .