A Study of the Continuous Optimization Problem Using a Wood Robot Controlled by a Biologically Motivated System

[1]  Jong-Chen Chen,et al.  A multilevel neuromolecular architecture that uses the extradimensional bypass principle to facilitate evolutionary learning , 1994 .

[2]  Julian Francis Miller,et al.  Evolution in materio: looking beyond the silicon box , 2002, Proceedings 2002 NASA/DoD Conference on Evolvable Hardware.

[3]  M. Conrad,et al.  Learning synergy in a multilevel neuronal architecture. , 1994, Bio Systems.

[4]  Kenji Toda,et al.  Real-world applications of analog and digital evolvable hardware , 1999, IEEE Trans. Evol. Comput..

[5]  Bu-Sung Lee,et al.  Memetic algorithm using multi-surrogates for computationally expensive optimization problems , 2007, Soft Comput..

[6]  Paul J. Layzell,et al.  Analysis of unconventional evolved electronics , 1999, CACM.

[7]  R. May,et al.  Stability and Complexity in Model Ecosystems , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  Jong-Chen Chen,et al.  Problem Solving with a Perpetual Evolutionary Learning Architecture , 2004, Applied Intelligence.

[9]  Jordan B. Pollack,et al.  Automatic design and manufacture of robotic lifeforms , 2000, Nature.

[10]  Yew-Soon Ong,et al.  Memetic Computation—Past, Present & Future [Research Frontier] , 2010, IEEE Computational Intelligence Magazine.

[11]  John Horgan The End of Science Revisited , 2004, Computer.

[12]  Julian Francis Miller,et al.  Towards the automatic design of more efficient digital circuits , 2000, Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.