Thermocapillarity in Microfluidics—A Review

This paper reviews the past and recent studies on thermocapillarity in relation to microfluidics. The role of thermocapillarity as the change of surface tension due to temperature gradient in developing Marangoni flow in liquid films and conclusively bubble and drop actuation is discussed. The thermocapillary-driven mass transfer (the so-called Benard-Marangoni effect) can be observed in liquid films, reservoirs, bubbles and droplets that are subject to the temperature gradient. Since the contribution of a surface tension-driven flow becomes more prominent when the scale becomes smaller as compared to a pressure-driven flow, microfluidic applications based on thermocapillary effect are gaining attentions recently. The effect of thermocapillarity on the flow pattern inside liquid films is the initial focus of this review. Analysis of the relation between evaporation and thermocapillary instability approves the effect of Marangoni flow on flow field inside the drop and its evaporation rate. The effect of thermocapillary on producing Marangoni flow inside drops and liquid films, leads to actuation of drops and bubbles due to the drag at the interface, mass conservation, and also gravity and buoyancy in vertical motion. This motion can happen inside microchannels with a closed multiphase medium, on the solid substrate as in solid/liquid interaction, or on top of a carrier liquid film in open microfluidic systems. Various thermocapillary-based microfluidic devices have been proposed and developed for different purposes such as actuation, sensing, trapping, sorting, mixing, chemical reaction, and biological assays throughout the years. A list of the thermocapillary based microfluidic devices along with their characteristics, configurations, limitations, and improvements are presented in this review.

[1]  W. Z. Black,et al.  Evaporation of water droplets placed on a heated horizontal surface , 2002 .

[2]  Nina Kovalchuk,et al.  Evaporation of sessile droplets , 2014 .

[3]  Haihu Liu,et al.  Lattice Boltzmann phase-field modeling of thermocapillary flows in a confined microchannel , 2014, J. Comput. Phys..

[4]  G. P. Neitzel,et al.  Instability of thermocapillary–buoyancy convection in shallow layers. Part 1. Characterization of steady and oscillatory instabilities , 1998, Journal of Fluid Mechanics.

[5]  Y. Gianchandani,et al.  Thermocapillary Actuation of Millimeter-Scale Rotary Structures , 2014, Journal of Microelectromechanical Systems.

[6]  Z. Jiao,et al.  Thermocapillary actuation of droplet in a planar microchannel , 2008 .

[7]  Thermally-actuated high speed droplet manipulation platform , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[8]  O. Matar,et al.  Thermocapillary-driven motion of a sessile drop: effect of non-monotonic dependence of surface tension on temperature. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[9]  F. Heslot,et al.  Fingering instability of thin spreading films driven by temperature gradients , 1990, Nature.

[10]  R. Grigoriev,et al.  Chaotic mixing in microdroplets. , 2003, Lab on a chip.

[11]  THERMOCAPILLARY MANIPULATION OF MICROFLUIDIC DROPLETS : THEORY AND APPLICATIONS , 2007 .

[12]  S. H. Davis,et al.  Steady thermocapillary flows in two-dimensional slots , 1982, Journal of Fluid Mechanics.

[13]  M. Antoni,et al.  Evaporation and Marangoni driven convection in small heated water droplets. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[14]  Daniel Attinger,et al.  Pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study , 2009, 1010.2560.

[15]  Nam-Trung Nguyen,et al.  Thermocapillary Effect of a Liquid Plug in Transient Temperature Fields , 2005 .

[16]  Vincent Miralles,et al.  Thermocapillary actuation by optimized resistor pattern: bubbles and droplets displacing, switching and trapping. , 2010, Lab on a chip.

[17]  E. Furlani Temporal instability of viscous liquid microjets with spatially varying surface tension , 2005 .

[18]  D. Semwogerere,et al.  Evolution of hexagonal patterns from controlled initial conditions in a Bénard-Marangoni convection experiment. , 2002, Physical review letters.

[19]  Greg F. Naterer,et al.  Thermocapillary control of microfluidic transport with a stationary cyclic heat source , 2005 .

[20]  R. Balasubramaniam,et al.  Thermocapillary migration of droplets: an exact solution for small Marangoni numbers , 1987 .

[21]  J. Straub,et al.  Analysis of the evaporation coefficient and the condensation coefficient of water , 2001 .

[22]  Mohidus Samad Khan,et al.  Isothermal noncoalescence of liquid droplets at the air-liquid interface. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[23]  Michael F Schatz,et al.  Optical manipulation of microscale fluid flow. , 2003, Physical review letters.

[24]  Charles N Baroud,et al.  Dynamics of microfluidic droplets. , 2010, Lab on a chip.

[25]  Nam-Trung Nguyen,et al.  Chaotic motion of microplugs under high-frequency thermocapillary actuation , 2007 .

[26]  F. Hong,et al.  Temperature-Induced Coalescence of Colliding Binary Droplets on Superhydrophobic Surface , 2014, Scientific Reports.

[27]  M. Bowen,et al.  Thermally induced van der Waals rupture of thin viscous fluid sheets , 2012 .

[28]  Hans J. Rath,et al.  Convective instability mechanisms in thermocapillary liquid bridges , 1995 .

[29]  Ronald G. Larson,et al.  Evaporation of a Sessile Droplet on a Substrate , 2002 .

[30]  J. Satrape Interactions and collisions of bubbles in thermocapillary motion , 1992 .

[31]  Yuejun Zhao,et al.  Thermocapillary actuation of binary drops on solid surfaces , 2011 .

[32]  E. Fort,et al.  From bouncing to floating: noncoalescence of drops on a fluid bath. , 2005, Physical review letters.

[33]  A. R. Kaiser,et al.  Microfabricated structures for integrated DNA analysis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[34]  O. Matar,et al.  Stability and Two-phase Dynamics of Evaporating Marangoni-driven Flows in Laterally-heated Liquid Layers and Sessile Droplets , 2015 .

[35]  A. Scharmann,et al.  Instabilities of shallow dynamic thermocapillary liquid layers , 1992 .

[36]  Aa Anton Darhuber,et al.  Thermocapillary actuation of liquid flow on chemically patterned surfaces , 2003 .

[37]  Interfacial thermocapillary pressure of an accelerated droplet in microchannels: Part II. Heat transfer formulation , 2007 .

[38]  D. Baigl,et al.  Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives. , 2012, Lab on a chip.

[39]  Hsan-Yin Hsu,et al.  Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate. , 2007, Applied physics letters.

[40]  Michael F. Schatz,et al.  Long-wavelength surface-tension-driven Bénard convection: experiment and theory , 1997, Journal of Fluid Mechanics.

[41]  C. Buffone,et al.  Marangoni-driven instabilities of an evaporating liquid-vapor interface. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  A. Nadim,et al.  Thermocapillary migration of an attached drop on a solid surface , 1994 .

[43]  Numerical Simulation of Thermocapillary Pumping Using the Volume of Fluid Method , 2007 .

[44]  Michael F. Schatz,et al.  Time-independent square patterns in surface-tension-driven Benard convection , 1999 .

[45]  Sung Yong Park,et al.  Light-Driven Droplet Manipulation Technologies for Lab-on-a-Chip Applications , 2011 .

[46]  H. Cho,et al.  Discrete Droplet Manipulation on Liquid Platforms using Thermal Gradients , 2009 .

[47]  S. Bankoff,et al.  Long-wave instabilities of heated falling films: two-dimensional theory of uniform layers , 1991, Journal of Fluid Mechanics.

[48]  Oron,et al.  Stable localized patterns in thin liquid films. , 1992, Physical review letters.

[49]  Tanemasa Asano,et al.  Microfluidic oscillator using vapor bubble on thin film heater , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[50]  Uwe Thiele,et al.  Nonlinear evolution of nonuniformly heated falling liquid films , 2002 .

[51]  Xiaoze Du,et al.  Bubble circling phenomena in subcooled nucleate pool boiling on microwires , 2013 .

[52]  David McGloin,et al.  Thermocapillary manipulation of droplets using holographic beam shaping: Microfluidic pin ball , 2008 .

[53]  Yu. K. Bratukhin Thermocapillary drift of a droplet of viscous liquid , 1975 .

[54]  Nam-Trung Nguyen,et al.  Theoretical and experimental investigation of thermocapillary actuation for microplugs , 2006, SPIE Micro + Nano Materials, Devices, and Applications.

[55]  S. Wagner,et al.  Generation of high-resolution surface temperature distributions , 2002 .

[56]  Michael J. Miksis,et al.  The effect of the contact line on droplet spreading , 1991, Journal of Fluid Mechanics.

[57]  Temperature-induced migration of a bubble in a soft microcavity , 2011 .

[58]  A. Scharmann,et al.  The periodic instability of thermocapillary convection in cylindrical liquid bridges , 1991 .

[59]  L. Shchur,et al.  Evaporation and fluid dynamics of a sessile drop of capillary size. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  Didier Villers,et al.  Temperature dependence of the interfacial tension between water and long-chain alcohols , 1988 .

[61]  Sigurd Wagner,et al.  Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays , 2003 .

[62]  I. Puchades,et al.  Optical Micromirror Actuation using Thermocapillary Effect in Microdroplets , 2009, 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems.

[63]  Wen-rui Hu,et al.  Experimental investigation on thermocapillary drop migration at large Marangoni number in reduced gravity. , 2005, Journal of Colloid and Interface Science.

[64]  Suresh V. Garimella,et al.  A microscale model for thin-film evaporation in capillary wick structures , 2011 .

[65]  G. Naterer,et al.  Interfacial thermocapillary pressure of an accelerated droplet in microchannels: Part I. Fluid flow formulation , 2007 .

[66]  L. Rosenfeld,et al.  Shape change, engulfment, and breakup of partially engulfed compound drops undergoing thermocapillary migration. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  X. Huang,et al.  Manipulation of a droplet in a planar channel by periodic thermocapillary actuation , 2008 .

[68]  THERMOCAPILLARY ACTUATION BY OPTIMIZED RESISTOR PATTERN , 2010 .

[69]  K. Maki,et al.  Fast evaporation of spreading droplets of colloidal suspensions. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[70]  Michael F. Schatz,et al.  EXPERIMENTS ON THERMOCAPILLARY INSTABILITIES , 2003 .

[71]  Greg F. Naterer,et al.  Surface tension and frictional resistance of thermocapillary pumping in a closed microchannel , 2006 .

[72]  Sigurd Wagner,et al.  Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation. , 2004, Lab on a chip.

[73]  P. Gao,et al.  Thermocapillary migration of nondeformable drops , 2008 .

[74]  Kathleen J. Stebe,et al.  Influence of surfactants on an evaporating drop: Fluorescence images and particle deposition patterns , 2003 .

[75]  R. Penfold,et al.  Incipient mixing by Marangoni effects in slow viscous flow of two immiscible fluid layers , 2015 .

[76]  Reciprocating thermocapillary plug motion in an externally heated capillary , 2006 .

[77]  Sigurd Wagner,et al.  Microfluidic actuation by modulation of surface stresses , 2003 .

[78]  D. Schwabe,et al.  Steady and oscillatory thermocapillary convection in liquid columns with free cylindrical surface , 1983, Journal of Fluid Mechanics.

[79]  G. Sekhar,et al.  Thermocapillary drift on a spherical drop in a viscous fluid , 2013 .

[80]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .

[81]  S. Bankoff,et al.  Long-scale evolution of thin liquid films , 1997 .

[82]  Z. Jiao Thermocapillary actuation and droplet manipulation in microfluidics , 2009 .

[83]  H. Cho,et al.  Droplets on liquid surfaces: Dual equilibrium states and their energy barrier , 2013 .

[84]  R. Grigoriev,et al.  Mixing properties of steady flow in thermocapillary driven droplets , 2007 .

[85]  K. Mohseni,et al.  A Unified Velocity Model for Digital Microfluidics , 2007 .

[86]  François Gallaire,et al.  Thermocapillary valve for droplet production and sorting. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[87]  Gregory W Faris,et al.  Optically addressed droplet-based protein assay. , 2005, Journal of the American Chemical Society.

[88]  F. Duan,et al.  Sessile nanofluid droplet drying. , 2015, Advances in colloid and interface science.

[89]  H. Rath,et al.  Thermocapillary Bubble Migration at High Reynolds and Marangoni Numbers under Low Gravity , 1996 .

[90]  S. Troian,et al.  A study of mixing in thermocapillary flows on micropatterned surfaces , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[91]  Nagel,et al.  Contact line deposits in an evaporating drop , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[92]  Tafti Ehsan Yakhsh Thermally-induced Motion Of Droplets On A Thin Liquid Layer And Its Application To Droplet Manipulation Platforms , 2010 .

[93]  Xiyun Lu,et al.  Numerical simulation of drop Marangoni migration under microgravity , 2004 .

[94]  Hyoung J. Cho,et al.  Droplet actuation on a liquid layer due to thermocapillary motion: Shape effect , 2010 .

[95]  K. Sefiane,et al.  On the effect of marangoni flow on evaporation rates of heated water drops. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[96]  A. Nepomnyashchy,et al.  Long-wavelength thermocapillary instability with the Soret effect. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[97]  Nengli Zhang,et al.  EXPERIMENTAL STUDY OF MARANGONI-BENARD CONVECTION IN A LIQUID LAYER INDUCED BY EVAPORATION , 1998 .

[98]  M. Burns,et al.  Thermocapillary Pumping of Discrete Drops in Microfabricated Analysis Devices , 1999 .

[99]  F. Brochard,et al.  Motions of droplets on solid surfaces induced by chemical or thermal gradients , 1989 .

[100]  G. Tryggvason,et al.  Pattern formation of drops in thermocapillary migration , 2006 .

[101]  Amar S. Basu,et al.  Virtual microfluidic traps, filters, channels and pumps using Marangoni flows , 2008 .

[102]  George M. Homsy,et al.  Thermocapillary migration of long bubbles in polygonal tubes. I. Theory , 2001 .

[103]  Françoise Brochard-Wyart,et al.  Motions of droplets on hydrophobic model surfaces induced by thermal gradients , 1993 .

[104]  A M C E James Thomson,et al.  XLII. On certain curious motions observable at the surfaces of wine and other alcoholic liquors , 1855 .

[105]  Alexander Oron,et al.  Nonlinear dynamics of three-dimensional long-wave Marangoni instability in thin liquid films , 2000 .

[106]  Thermocapillary actuation of liquids using patterned microheater arrays , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[107]  Nam-Trung Nguyen,et al.  Thermocapillary actuation of a water droplet encapsulated in an oil plug , 2007 .

[108]  M. Lappa,et al.  Marangoni flotation of liquid droplets , 2003, Journal of Fluid Mechanics.

[109]  R. Larson,et al.  Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[110]  Amar S. Basu,et al.  Shaping high-speed Marangoni flow in liquid films by microscale perturbations in surface temperature , 2007 .

[111]  C. Marangoni Ueber die Ausbreitung der Tropfen einer Flüssigkeit auf der Oberfläche einer anderen , 1871 .

[112]  A. A. Darhuber,et al.  Planar digital nanoliter dispensing system based on thermocapillary actuation. , 2010, Lab on a chip.

[113]  P. Wayner,et al.  Evaporation from a two-dimensional extended meniscus , 1972 .

[114]  G. M. Homsy,et al.  Steady Vapor Bubbles in Rectangular Microchannels. , 2001, Journal of colloid and interface science.

[115]  Hua Hu,et al.  Analysis of the microfluid flow in an evaporating sessile droplet. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[116]  Xiaoze Du,et al.  Thermocapillary effect on bubble sweeping and circling during subcooled nucleate pool boiling of water over microwire , 2015 .

[117]  R. Savino,et al.  Wetting prevention by thermal marangoni effect. Experimental and numerical simulation , 1998 .

[118]  Joon Sang Lee,et al.  Film drainage mechanism between two immiscible droplets , 2014 .

[119]  L. Rosenfeld,et al.  On the thermocapillary motion of partially engulfed compound drops , 2009, Journal of Fluid Mechanics.

[120]  Peter Ehrhard,et al.  Non-isothermal spreading of liquid drops on horizontal plates , 1991, Journal of Fluid Mechanics.

[121]  G. P. Neitzel,et al.  Instability of thermocapillary–buoyancy convection in shallow layers. Part 2. Suppression of hydrothermal waves , 1998, Journal of Fluid Mechanics.

[122]  Thermocapillary Actuation of Droplets on a Microfluidic Chip , 2012 .

[123]  C. Buffone,et al.  Investigation of thermocapillary convective patterns and their role in the enhancement of evaporation from pores , 2004 .

[124]  Motofumi Suzuki,et al.  Photothermally controlled Marangoni flow around a micro bubble , 2015 .

[125]  V. Ajaev Spreading of thin volatile liquid droplets on uniformly heated surfaces , 2005, Journal of Fluid Mechanics.

[126]  P. Rosenau,et al.  On a nonlinear thermocapillary effect in thin liquid layers , 1994, Journal of Fluid Mechanics.

[127]  O. Matar,et al.  Convective rolls and hydrothermal waves in evaporating sessile drops. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[128]  P. Kavehpour,et al.  Evaporatively-driven Marangoni instabilities of volatile liquid films spreading on thermally conductive substrates , 2002 .

[129]  Microfluidic detection and analysis by integration of evanescent wave sensing with thermocapillary actuation , 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005..

[130]  Sample transport with thermocapillary force for microfluidics , 2006 .

[131]  Robert H. Davis,et al.  Simultaneous sedimentation and coalescence of a dilute dispersion of small drops , 1995, Journal of Fluid Mechanics.

[132]  Richard B. Fair,et al.  Digital microfluidics: is a true lab-on-a-chip possible? , 2007 .

[133]  François Gallaire,et al.  Laser-induced force on a microfluidic drop: origin and magnitude. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[134]  P. Gao,et al.  Thermocapillary Motion Of Droplets At Large Marangoni Numbers , 2008 .

[135]  J. M. Bush,et al.  The influence of surface tension gradients on drop coalescence , 2009 .

[136]  Julien Marchalot,et al.  An optimized resistor pattern for temperature gradient control in microfluidics , 2009 .

[137]  R. Savino,et al.  Modelling of Non-coalescing Liquid Drops in the Presence of Thermocapillary Convection , 1997 .

[138]  Nengli Zhang,et al.  Effects of Evaporation and Thermocapillary Convection on Volatile Liquid Droplets , 2001 .

[139]  P. Stephan,et al.  Dynamics of volatile liquid droplets on heated surfaces: theory versus experiment , 2008, Journal of Fluid Mechanics.

[140]  P. Rosenau,et al.  Formation of patterns induced by thermocapillarity and gravity , 1992 .

[141]  L. Pismen,et al.  Pattern formation in large-scale Marangoni convection with deformable interface , 1995 .

[142]  Jyh-Chen Chen,et al.  Numerical study of a droplet migration induced by combined thermocapillary-buoyancy convection , 2010 .

[143]  J. Shereshefsky,et al.  Surface Tension of Saturated Vapors and the Equation of Eötvös , 1930 .

[144]  R. Panton,et al.  Control of Surface Tension Flows: Instability of a Liquid Jet , 1990 .

[145]  Aa Anton Darhuber,et al.  PRINCIPLES OF MICROFLUIDIC ACTUATION BY MODULATION OF SURFACE STRESSES , 2005 .

[146]  L. Barash Dependence of fluid flows in an evaporating sessile droplet on the characteristics of the substrate , 2014, 1407.6049.

[147]  S. C. Hardy,et al.  The motion of bubbles in a vertical temperature gradient , 1979 .

[148]  M. Brenner,et al.  Thermal bending of liquid sheets and jets , 2003 .

[149]  S. Hardt,et al.  Thermocapillary flow on superhydrophobic surfaces. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[150]  Simon Ostrach,et al.  Low-Gravity Fluid Flows , 1982 .

[151]  K. Yoshikawa,et al.  Forward and backward laser-guided motion of an oil droplet. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[152]  Arezki Boudaoud,et al.  Evaporation of a thin film: diffusion of the vapour and Marangoni instabilities , 2004, Journal of Fluid Mechanics.

[153]  Jean-Pierre Delville,et al.  An optical toolbox for total control of droplet microfluidics. , 2007, Lab on a chip.

[154]  Benjamin J. Fischer,et al.  Particle convection in an evaporating colloidal droplet , 2002 .

[155]  D. Burnham,et al.  Mixing via thermocapillary generation of flow patterns inside a microfluidic drop , 2009 .

[156]  Stephane Regnier,et al.  Laser-Induced Thermocapillary Convection for Mesoscale Manipulation , 2009 .

[157]  L. Rosenfeld,et al.  Thermocapillary motion of hybrid drops , 2008 .

[158]  Lu Zhang,et al.  Motion of a drop in a vertical temperature gradient at small Marangoni number – the critical role of inertia , 2001, Journal of Fluid Mechanics.

[159]  Ali Borhan,et al.  Thermocapillary motion of deformable drops at finite Reynolds and Marangoni numbers , 1997 .

[160]  J. Arakeri,et al.  Levitation of a drop over a film flow , 1999, Journal of Fluid Mechanics.

[161]  M. Velarde,et al.  Buoyancy-thermocapillary instability: the role of interfacial deformation in one- and two-component fluid layers heated from below or above , 1982, Journal of Fluid Mechanics.

[162]  Nam-Trung Nguyen,et al.  Thermocapillary actuation of liquid plugs using a heater array , 2007 .

[163]  S. G. Bankoff,et al.  Nonlinear stability of evaporating/condensing liquid films , 1988, Journal of Fluid Mechanics.

[164]  S. Herminghaus,et al.  Wetting: Statics and dynamics , 1997 .

[165]  Marc K. Smith,et al.  The spreading of a non-isothermal liquid droplet , 1999 .

[166]  C. Megaridis,et al.  Thermocapillary flow effects on convective droplet evaporation , 1996 .

[167]  Günter Wozniak,et al.  Thermocapillary migration of bubbles and drops at moderate to large Marangoni number and moderate Reynolds number in reduced gravity , 1999 .

[168]  D. W. Moore,et al.  The effect of the variation of surface tension with temperature on the motion of bubbles and drops , 1967, Journal of Fluid Mechanics.

[169]  R. Shabani Three-phase Contact Line Phenomena In Droplets On Solid And Liquid Surfaces: Electrocapillary, Pinning, Wetting Line Velocity Effect, And Free Liquid Surface Deformation , 2013 .

[170]  S. Bankoff,et al.  Steady thermocapillary flows of thin liquid layers. II. Experiment , 1990 .

[171]  R. Toth,et al.  Maze solving using temperature-induced Marangoni flow , 2015 .

[172]  Stephen H. Davis,et al.  Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities , 1983, Journal of Fluid Mechanics.

[173]  Ashutosh Sharma,et al.  Polymer patterns in evaporating droplets on dissolving substrates. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[174]  A. Viviani,et al.  Experimental study of Marangoni bubble migration in normal gravity , 2005 .

[175]  Sigurd Wagner,et al.  Microfluidic detection and analysis by integration of thermocapillary actuation with a thin-film optical waveguide , 2005 .

[176]  Schatz,et al.  Long-wavelength instability in surface-tension-driven Bénard convection. , 1995, Physical review letters.

[177]  R. Grigoriev,et al.  Thermocapillary migration of interfacial droplets , 2009 .

[178]  Aya Eid,et al.  Light-driven formation and rupture of droplet bilayers. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[179]  Schatz,et al.  Onset of Surface-Tension-Driven Bénard Convection. , 1995, Physical review letters.

[180]  S. Ostrach,et al.  Transient thermocapillary flow in thin liquid layers , 1980 .

[181]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[182]  Sandra M. Troian,et al.  Patterning liquid flow on the microscopic scale , 1999, Nature.

[183]  Haihu Liu,et al.  Modeling and simulation of thermocapillary flows using lattice Boltzmann method , 2012, J. Comput. Phys..

[184]  T. Fischer,et al.  Interfacial thermocapillary vortical flow for microfluidic mixing. , 2006, Journal of the American Chemical Society.

[185]  J. Pearson,et al.  On convection cells induced by surface tension , 1958, Journal of Fluid Mechanics.

[186]  V. Berejnov,et al.  Spontaneous thermocapillary interaction of drops: Effect of surface deformation at nonzero capillary number , 2002 .

[187]  Roman O. Grigoriev,et al.  Chaotic mixing in thermocapillary-driven microdroplets , 2005 .

[188]  Nam-Trung Nguyen,et al.  Thermocoalescence of microdroplets in a microfluidic chamber , 2012 .

[189]  Howard A. Stone,et al.  ENGINEERING FLOWS IN SMALL DEVICES , 2004 .

[190]  Wen-rui Hu,et al.  Transient behavior of the thermocapillary migration of drops under the influence of deformation , 2011, 1107.0519.

[191]  R. D. Schroll,et al.  Laser microfluidics: fluid actuation by light , 2009, 0903.1739.

[192]  Haihu Liu,et al.  Modelling thermocapillary migration of a microfluidic droplet on a solid surface , 2015, J. Comput. Phys..

[193]  H. Cho,et al.  Impact of drops on the surface of immiscible liquids. , 2010, Journal of colloid and interface science.

[194]  G. Paul Neitzel,et al.  NONCOALESCENCE AND NONWETTING BEHAVIOR OF LIQUIDS , 2002 .

[195]  R. Wunenburger,et al.  Laser switching and sorting for high speed digital microfluidics , 2008 .

[196]  O. Matar,et al.  Effect of contact line dynamics on the thermocapillary motion of a droplet on an inclined plate. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[197]  G. Homsy,et al.  Thermocapillary migration of long bubbles in polygonal tubes. II. Experiments , 2003 .

[198]  Sumita Pennathur,et al.  Optofluidics: field or technique? , 2008, Lab on a chip.

[199]  Sigurd Wagner,et al.  Effect of contact angle hysteresis on thermocapillary droplet actuation , 2005 .

[200]  K. Sefiane,et al.  The strong influence of substrate conductivity on droplet evaporation , 2009, Journal of Fluid Mechanics.

[201]  R. Subramanian,et al.  Thermocapillary motion of a liquid drop on a horizontal solid surface. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[202]  H. Erbil,et al.  Evaporation of pure liquid sessile and spherical suspended drops: a review. , 2012, Advances in colloid and interface science.

[203]  J. Delville,et al.  Thermocapillary flows and interface deformations produced by localized laser heating in confined environment , 2012, 1203.1789.

[204]  T. E. Morthland,et al.  Instabilities of dynamic thermocapillary liquid layers with magnetic fields , 1999, Journal of Fluid Mechanics.