Enhanced microwave absorption and corrosion resistance of carbonyl iron encapsulated by silicone modified epoxy resin

[1]  Yanlin Xu,et al.  A Wideband Energy Selective Surface With Quasi-Elliptic Bandpass Response and High-Power Microwave Shielding , 2024, IEEE Transactions on Electromagnetic Compatibility.

[2]  Bingxing Wang,et al.  Mechanism of adding carbonyl iron powder to enhance the magnetic properties of Fe-Si-B-Cu-Nb nanocrystalline soft magnetic composites , 2024, Journal of Alloys and Compounds.

[3]  Yuehua Wu,et al.  An environmentally friendly chitosan-derived VO2/carbon aerogel for radar infrared compatible stealth , 2023, Carbon.

[4]  Y. Liu,et al.  Research on Properties of Silicone-Modified Epoxy Resin and 3D Printing Materials , 2023, ACS omega.

[5]  Yuehua Wu,et al.  Alkali and ion exchange co-modulation strategies to design magnetic–dielectric synergistic nano-absorbers for tailoring microwave absorption , 2023, Nano Research.

[6]  Shengxiang Huang,et al.  Multi-Interfacial Tio2/Carbon Fibers Encapsulated with Needle-Like Feco2o4 for Excellent Microwave Absorption , 2023, SSRN Electronic Journal.

[7]  S. Wen,et al.  Surface modification of carbonyl iron particles using dopamine and silane coupling agent for high-performance magnetorheological elastomers , 2023, Polymer Testing.

[8]  Xin Yang,et al.  In Situ Synthesis of C-N@NiFe2O4@MXene/Ni Nanocomposites for Efficient Electromagnetic Wave Absorption at an Ultralow Thickness Level , 2022, Molecules.

[9]  K. Bogdanowicz,et al.  Microwave absorption properties of carbonyl iron-based paint coatings for military applications , 2022, Defence Technology.

[10]  Rui Cai,et al.  Microstructure, Electromagnetic Properties, and Microwave Absorption Mechanism of SiO2-MnO-Al2O3 Based Manganese Ore Powder for Electromagnetic Protection , 2022, Molecules.

[11]  L. Deng,et al.  Silicone-encapsulated carbonyl iron filler for corrosion-resistant electromagnetic shielding , 2022, Materials Chemistry and Physics.

[12]  Rui Cai,et al.  Lightweight, Low-Cost Co2SiO4@diatomite Core-Shell Composite Material for High-Efficiency Microwave Absorption , 2022, Molecules.

[13]  Z. Yao,et al.  Optimizing the electromagnetic parameters and microwave absorption of corrosion-resistant FCIP@EP by data-driven discovery , 2022, Journal of Magnetism and Magnetic Materials.

[14]  R. Zhao,et al.  Metal Oxide/Nitrogen-Doped Carbon Nanosheet Heteronanostructures as Highly Efficient Electromagnetic Wave Absorbing Materials , 2021, Molecules.

[15]  K. Sista,et al.  Carbonyl iron powders as absorption material for microwave interference shielding: A review , 2021 .

[16]  R. James,et al.  A Tool to Predict Coercivity in Magnetic Materials , 2020, Acta Materialia.

[17]  Feng Xu,et al.  Enhanced microwave absorption properties of barium ferrites by Zr4+-Ni2+ doping and oxygen-deficient sintering , 2020, Journal of Magnetism and Magnetic Materials.

[18]  Jingmin Wang,et al.  Starfish-like C/CoNiO2 heterostructure derived from ZIF-67 with tunable microwave absorption properties , 2019, Chemical Engineering Journal.

[19]  Z. Yao,et al.  Epoxy resin addition on the microstructure, thermal stability and microwave absorption properties of core-shell carbonyl iron@epoxy composites , 2019, Journal of Magnetism and Magnetic Materials.

[20]  A. K. Srivastava,et al.  Lightweight SrM/CCTO/rGO nanocomposites for optoelectronics and Ku band microwave absorption , 2019, Journal of Materials Science: Materials in Electronics.

[21]  I. Kuřitka,et al.  Impact of corrosion process of carbonyl iron particles on magnetorheological behavior of their suspensions , 2018, Journal of Industrial and Engineering Chemistry.

[22]  Jingwei Zhang,et al.  Fabrication of TiN/Carbon nanofibers by electrospinning and their electromagnetic wave absorption properties , 2018 .

[23]  Yawei Dong,et al.  Surface modification of carbonyl iron powders with silicone polymers in supercritical fluid to get higher dispersibility and higher thermal stability , 2017 .

[24]  L. Zhen,et al.  Microwave absorption properties of FeSi flaky particles prepared via a ball-milling process , 2015 .

[25]  Wan-cheng Zhou,et al.  Enhanced antioxidation and electromagnetic properties of Co-coated flaky carbonyl iron particles prepared by electroless plating , 2015 .

[26]  Ru‐Shi Liu,et al.  Ternary Spinel MCo2O4 (M = Mn, Fe, Ni, and Zn) Porous Nanorods as Bifunctional Cathode Materials for Lithium-O2 Batteries. , 2015, ACS applied materials & interfaces.

[27]  M. Streckova,et al.  A comparison of soft magnetic composites designed from different ferromagnetic powders and phenolic resins , 2015 .

[28]  J. Brus,et al.  A Comprehensive Study of Soft Magnetic Materials Based on FeSi Spheres and Polymeric Resin Modified by Silica Nanorods , 2014 .

[29]  M. M. Dias,et al.  Influence of resin type and content on electrical and magnetic properties of soft magnetic composites (SMCs) , 2013 .

[30]  R. Mishra,et al.  Corrosion behavior of a friction stir processed rare-earth added magnesium alloy , 2012 .

[31]  Nan Wang,et al.  Microwave-absorbing properties of shape-optimized carbonyl iron particles with maximum microwave permeability , 2009 .

[32]  Chi-Hoon Jun,et al.  Monolithic Fabry–Perot Wavelength Tunable Filter with Electrothermal Actuation , 2005 .

[33]  E. Akiyama,et al.  Change in the surface composition of amorphous FeCrMoPC alloys during air exposure , 1995 .

[34]  D. K. Owens,et al.  Estimation of the surface free energy of polymers , 1969 .

[35]  G. Jian Influence of Ball Milling Time on the Microstructure and Properties of Prepared Fe-ZnO Core-shell Nanocomposite Particles , 2005 .