ASTER and WorldView-3 satellite data for mapping lithology and alteration minerals associated with Pb-Zn mineralization

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and WorldView-3 (WV-3) satellite remote sensing data were used for mapping lithological units and hydrothermal alteration zone...

[1]  J. Kane,et al.  Fiber Optics and Strain Interferometry , 1966 .

[2]  G. Hunt SPECTRAL SIGNATURES OF PARTICULATE MINERALS IN THE VISIBLE AND NEAR INFRARED , 1977 .

[3]  R. Ashley,et al.  Spectra of altered rocks in the visible and near infrared , 1979 .

[4]  M. Berberian,et al.  Towards a paleogeography and tectonic evolution of Iran: Reply , 1981 .

[5]  A. R. Harrison,et al.  Standardized principal components , 1985 .

[6]  S. Gaffey,et al.  Spectral reflectance of carbonate minerals in the visible and near infrared (O.35-2.55 microns); calcite, aragonite, and dolomite , 1986 .

[7]  B. ‐. Samani,et al.  Metallogeny of the Precambrian in Iran , 1988 .

[8]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[9]  Moujahed I. Husseini,et al.  Tectonic and Deposition Model of Late Precambrian-Cambrian Arabian and Adjoining Plates , 1989 .

[10]  J. Boardman Inversion Of Imaging Spectrometry Data Using Singular Value Decomposition , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[11]  W. P. Loughlin,et al.  PRINCIPAL COMPONENT ANALYSIS FOR ALTERATION MAPPING , 1991 .

[12]  L. Eklundh,et al.  A Comparative analysis of standardised and unstandardised Principal Component Analysis in remote sensing , 1993 .

[13]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[14]  H. Foerster,et al.  The Bafq mining district in central Iran; a highly mineralized Infracambrian volcanic field , 1994 .

[15]  K. Koike,et al.  Lineament analysis of satellite images using a segment tracing algorithm (STA) , 1995 .

[16]  John B. Adams,et al.  Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon , 1995 .

[17]  A. Moreno,et al.  Technical note The application of selective principal components analysis (SPCA) to a Thematic Mapper (TM) image for the recognition of geomorphologic features configuration , 1997 .

[18]  Rajat Gupta,et al.  Applied Hydrogeology of Fractured Rocks , 1999 .

[19]  L. Rowan,et al.  Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data , 2003 .

[20]  Robert D. Tucker,et al.  The Saghand Region, Central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana Tectonics , 2003 .

[21]  Fred A. Kruse,et al.  Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping , 2003, IEEE Trans. Geosci. Remote. Sens..

[22]  A. Crósta,et al.  Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis , 2003 .

[23]  Janice L. Bishop,et al.  The visible and infrared spectral properties of jarosite and alunite , 2005 .

[24]  Y. Ninomiya,et al.  Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data , 2005 .

[25]  Akira Iwasaki,et al.  Validation of a crosstalk correction algorithm for ASTER/SWIR , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[26]  John F. Mustard,et al.  Detection and discrimination of sulfate minerals using reflectance spectroscopy , 2006 .

[27]  Loredana Pompilio,et al.  Reflectance spectroscopy (0.3–2.5 µm) at various scales for bulk-rock identification , 2006 .

[28]  Qiuming Cheng Linhai Jing,et al.  Principal component analysis with optimum order sample correlation coefficient for image enhancement , 2006 .

[29]  B. Rockwell,et al.  Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data—Implications for geologic mapping and mineral resource investigations in well-studied and frontier areas , 2008 .

[30]  Sergei A. Pisarevsky,et al.  Compilation of Mineral Resource Data for Mississippi Valley-Type and Clastic-Dominated Sediment-Hosted Lead-Zinc Deposits , 2009 .

[31]  Andreas Hueni,et al.  Spectral Angle Mapper (SAM) for anisotropy class indexing in imaging spectrometry data , 2009, Optical Engineering + Applications.

[32]  David L. Huston,et al.  Sediment-Hosted Lead-Zinc Deposits in Earth History , 2010 .

[33]  Lawrence C. Rowan,et al.  Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals , 2010 .

[34]  Richard W. Saltus,et al.  A deposit model for Mississippi Valley-Type lead-zinc ores: Chapter A in Mineral deposit models for resource assessment , 2010 .

[35]  Mazlan Hashim,et al.  Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran , 2011 .

[36]  Lawrence C. Rowan,et al.  ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan , 2011 .

[37]  M. Hashim,et al.  The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits , 2012 .

[38]  M. Ataei,et al.  Mineral potential mapping with fuzzy models in the Kerman–Kashmar Tectonic Zone, Central Iran , 2012 .

[39]  Carles Canet,et al.  Metallogeny of Cretaceous carbonate-hosted Zn–Pb deposits of Iran: geotectonic setting and data integration for future mineral exploration , 2012 .

[40]  Mehdi Masoodi,et al.  Cimmerian evolution of the Central Iranian basement: Evidence from metamorphic units of the Kashmar-Kerman Tectonic Zone , 2013 .

[41]  Yusuf Eshqi Molan,et al.  Prospectivity mapping of Pb–Zn SEDEX mineralization using remote-sensing data in the Behabad area, Central Iran , 2013 .

[42]  Varinder Saini,et al.  A Simplified Approach for Interpreting Principal Component Images , 2013 .

[43]  Maged Marghany,et al.  Exploration of gold mineralization in a tropical region using Earth Observing-1 (EO1) and JERS-1 SAR data: a case study from Bau gold field, Sarawak, Malaysia , 2013, Arabian Journal of Geosciences.

[44]  Daniel B. Parvaz,et al.  Oxidation zones of volcanogenic massive sulphide deposits in the Troodos Ophiolite, Cyprus : targeting secondary copper deposits , 2014 .

[45]  Jeffrey S. Kargel,et al.  The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) after fifteen years: Review of global products , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[46]  Y. Ninomiya,et al.  Regional Lithological Mapping Using ASTER-TIR Data: Case Study for the Tibetan Plateau and the Surrounding Area , 2016 .

[47]  S. Tian,et al.  Extracting mineral alteration information using WorldView-3 data , 2017 .

[48]  Quazi K. Hassan,et al.  Pan-Sharpening of Landsat-8 Images and Its Application in Calculating Vegetation Greenness and Canopy Water Contents , 2017, ISPRS Int. J. Geo Inf..

[49]  M. M. Niyeh,et al.  Copper, Zinc, and Lead Mineral Prospectivity Mapping in the North of Tafresh, Markazi Province, Central Iran, Using the AHP-OWA Method , 2017 .

[50]  Sankaran Rajendran,et al.  Characterization of ASTER spectral bands for mapping of alteration zones of volcanogenic massive sulphide deposits , 2017 .

[51]  Biswajeet Pradhan,et al.  Integration of SPOT-5 and ASTER satellite data for structural tracing and hydrothermal alteration mineral mapping: implications for Cu–Au prospecting , 2018, International Journal of Image and Data Fusion.

[52]  Biswajeet Pradhan,et al.  Application of Multi-Sensor Satellite Data for Exploration of Zn-Pb Sulfide Mineralization in the Franklinian Basin, North Greenland , 2018, Remote. Sens..

[53]  John C. Mars,et al.  Mineral and Lithologic Mapping Capability of WorldView 3 Data at Mountain Pass, California, Using True- and False-Color Composite Images, Band Ratios, and Logical Operator Algorithms , 2018, Economic Geology.

[54]  M. Hashim,et al.  Mapping alteration mineral zones and lithological units in Antarctic regions using spectral bands of ASTER remote sensing data , 2018 .

[55]  Yongyang Xu,et al.  Hydrothermally altered mineral mapping using synthetic application of Sentinel-2A MSI, ASTER and Hyperion data in the Duolong area, Tibetan Plateau, China , 2018, Ore Geology Reviews.

[56]  Mazlan Hashim,et al.  Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land, Antarctica , 2018 .

[57]  S. Rajendran,et al.  Identification of new base metal mineralization in Kumaon Himalaya, India, using hyperspectral remote sensing and hydrothermal alteration , 2018 .

[58]  K. Vinod Kumar,et al.  Conjugate utilization of Landsat-8 OLI, ground gravity and magnetic data for targeting mafic cumulates within anorthositic-layered complex of Sittampundi, India , 2019, Geocarto International.

[59]  Chao Wu,et al.  Alteration mapping with short wavelength infrared (SWIR) spectroscopy on Xiaokelehe porphyry Cu-Mo deposit in the Great Xing’an Range, NE China: Metallogenic and exploration implications , 2019, Ore Geology Reviews.

[60]  E. Bedini,et al.  Application of WorldView-3 imagery and ASTER TIR data to map alteration minerals associated with the Rodalquilar gold deposits, southeast Spain , 2019, Advances in Space Research.

[61]  Jianguo Chen,et al.  Study on clues for gold prospecting in the Maizijing-Shulonggou area, Ningxia Hui autonomous region, China, using ALI, ASTER and WorldView-2 imagery , 2019, J. Vis. Commun. Image Represent..

[62]  Biswajeet Pradhan,et al.  Comparison of Different Algorithms to Map Hydrothermal Alteration Zones Using ASTER Remote Sensing Data for Polymetallic Vein-Type Ore Exploration: Toroud-Chahshirin Magmatic Belt (TCMB), North Iran , 2019, Remote. Sens..

[63]  Y. Ninomiya,et al.  Thermal infrared multispectral remote sensing of lithology and mineralogy based on spectral properties of materials , 2019, Ore Geology Reviews.

[64]  M. Hashim,et al.  Lithological and alteration mineral mapping in poorly exposed lithologies using Landsat-8 and ASTER satellite data: North-eastern Graham Land, Antarctic Peninsula , 2017, Ore Geology Reviews.

[65]  Snehamoy Chatterjee,et al.  Emittance Spectroscopy and Broadband Thermal Remote Sensing Applied to Phosphorite and Its Utility in Geoexploration: A Study in the Parts of Rajasthan, India , 2019, Remote. Sens..

[66]  B. Pradhan,et al.  Mapping hydrothermal alteration zones and lineaments associated with orogenic gold mineralization using ASTER data: A case study from the Sanandaj-Sirjan Zone, Iran , 2019, Advances in Space Research.

[67]  Mazlan Hashim,et al.  Remote sensing satellite imagery for prospecting geothermal systems in an aseismic geologic setting: Yankari Park, Nigeria , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[68]  Amin Beiranvand Pour,et al.  Lineament mapping and fractal analysis using SPOT-ASTER satellite imagery for evaluating the severity of slope weathering process , 2019, Advances in Space Research.

[69]  Biswajeet Pradhan,et al.  Landsat-8, Advanced Spaceborne Thermal Emission and Reflection Radiometer, and WorldView-3 Multispectral Satellite Imagery for Prospecting Copper-Gold Mineralization in the Northeastern Inglefield Mobile Belt (IMB), Northwest Greenland , 2019, Remote. Sens..

[70]  Amin Beiranvand Pour,et al.  Orogenic Gold in Transpression and Transtension Zones: Field and Remote Sensing Studies of the Barramiya-Mueilha Sector, Egypt , 2019, Remote. Sens..

[71]  Biswajeet Pradhan,et al.  Mapping Listvenite Occurrences in the Damage Zones of Northern Victoria Land, Antarctica Using ASTER Satellite Remote Sensing Data , 2019, Remote. Sens..

[72]  Amin Beiranvand Pour,et al.  A Remote Sensing-Based Application of Bayesian Networks for Epithermal Gold Potential Mapping in Ahar-Arasbaran Area, NW Iran , 2019, Remote. Sens..

[73]  K. V. Kumar,et al.  Potential Use of Airborne Hyperspectral AVIRIS-NG Data for Mapping Proterozoic Metasediments in Banswara, India , 2020 .

[74]  Snehamoy Chatterjee,et al.  Automated lithological mapping by integrating spectral enhancement techniques and machine learning algorithms using AVIRIS-NG hyperspectral data in Gold-bearing granite-greenstone rocks in Hutti, India , 2020, Int. J. Appl. Earth Obs. Geoinformation.