On separating families of bipartitions

Abstract We focus on families of bipartitions , i.e. set partitions consisting of at most two components. A family of bipartitions is a separating family for a set if every two elements in the set are separated by some bipartition. In this paper we enumerate separating families of arbitrary size. We furthermore enumerate inclusion-wise minimal separating families of minimum and maximum sizes.

[1]  Alfréd Rényi,et al.  On the theory of random search , 1965 .

[2]  Tetsuo Asano,et al.  Shattering a set of objects in 2d , 1999, CCCG.

[3]  Laxmikant V. Kalé,et al.  Combinatorial Search , 2011, Encyclopedia of Parallel Computing.

[4]  Joseph S. B. Mitchell,et al.  On the Complexity of Shattering Using Arrangements , 1991 .

[5]  Gyula Katona,et al.  Combinatorial Search Problems , 1972, International Centre for Mechanical Sciences.

[6]  Stasys Jukna,et al.  Extremal Combinatorics , 2001, Texts in Theoretical Computer Science. An EATCS Series.

[7]  Takahisa Toda,et al.  On Partitioning Colored Points , 2010, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[8]  A. Cayley A theorem on trees , 2009 .

[9]  Peng-Jun Wan,et al.  Separating points by axis-parallel lines , 2005, CCCG.

[10]  Olivier Devillers,et al.  Separating several point sets in the plane , 2001, CCCG.

[11]  Stephen A. Vavasis,et al.  Investigations in geometric subdivisions: linear shattering and cartographic map coloring , 2000 .

[12]  Claude Berge Principles of Combinatorics , 2012 .

[13]  Niraj K. Jha,et al.  Switching and Finite Automata Theory , 2010 .

[14]  Adrian Dumitrescu,et al.  Efficient Algorithms for Generation of Combinatorial Covering Suites , 2003, ISAAC.