Stochastic restricted Liu predictors in linear mixed models

Abstract In this article, we propose the stochastic restricted Liu predictors by augmenting the stochastic restrictions to the linear mixed models. The Liu biasing parameter is selected via generalized cross validation (GCV) criterion. Comparisons between the stochastic restricted Liu estimators and several other estimators, namely the BLUE, the mixed and Liu estimators are made through the mean square error matrix criterion. Finally, a numerical example and a simulation study are done to show the performance of the estimators.

[1]  Donald E. Myers,et al.  Linear and Generalized Linear Mixed Models and Their Applications , 2008, Technometrics.

[2]  Robin Thompson,et al.  Average information REML: An efficient algorithm for variance parameter estimation in linear mixed models , 1995 .

[3]  P. Coelho,et al.  A Small Area Predictor under Area-Level Linear Mixed Models with Restrictions , 2012 .

[4]  Colin L. Mallows,et al.  Some Comments on Cp , 2000, Technometrics.

[5]  M. Özkale,et al.  Gilmour's approach to mixed and stochastic restricted ridge predictions in linear mixed models , 2016 .

[6]  N. Varathan,et al.  Logistic Liu Estimator under stochastic linear restrictions , 2019 .

[7]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[8]  Eugene Demidenko,et al.  Mixed Models: Theory and Applications with R , 2013 .

[9]  G. Robinson That BLUP is a Good Thing: The Estimation of Random Effects , 1991 .

[10]  A Further Study of Predictions in Linear Mixed Models , 2014 .

[11]  M. Özkale Predictive performance of linear regression models , 2015 .

[12]  M. Revan Özkale,et al.  Superiority of the r-d class estimator over some estimators by the mean square error matrix criterion , 2007 .

[13]  Selahattin Kaçiranlar,et al.  On the Restricted Liu Estimator in the Logistic Regression Model , 2015, Commun. Stat. Simul. Comput..

[14]  Simon French,et al.  Prior Information in Linear Models , 1982 .

[15]  Deniz Inan,et al.  Liu-Type Logistic Estimator , 2013, Commun. Stat. Simul. Comput..

[16]  M. Revan Özkale,et al.  A stochastic restricted ridge regression estimator , 2009, J. Multivar. Anal..

[17]  Götz Trenkler,et al.  Nonnegative and positive definiteness of matrices modified by two matrices of rank one , 1991 .

[18]  Xu-Qing Liu,et al.  General ridge predictors in a mixed linear model , 2013 .

[19]  Predictions in nonlinear regression models. , 1997 .

[20]  Liu Kejian,et al.  A new class of blased estimate in linear regression , 1993 .

[21]  Dale Borowiak,et al.  Linear Models, Least Squares and Alternatives , 2001, Technometrics.

[22]  A new stochastic mixed Liu estimator in linear regression model , 2020, Communications in Statistics - Theory and Methods.

[23]  M. Revan Özkale,et al.  The Restricted and Unrestricted Two-Parameter Estimators , 2007 .

[24]  M. Özkale,et al.  An evaluation of ridge estimator in linear mixed models: an example from kidney failure data , 2017 .

[25]  S. R. Searle,et al.  The estimation of environmental and genetic trends from records subject to culling. , 1959 .

[26]  Muredach P Reilly,et al.  Ridge Regression for Longitudinal Biomarker Data , 2011, The international journal of biostatistics.

[27]  R. W. Farebrother,et al.  Further Results on the Mean Square Error of Ridge Regression , 1976 .

[28]  J. Brian Gray,et al.  Introduction to Linear Regression Analysis , 2002, Technometrics.

[29]  Ana Ivelisse Avilés,et al.  Linear Mixed Models for Longitudinal Data , 2001, Technometrics.

[30]  Xinfeng Chang On the almost unbiased Ridge and Liu estimator in the Logistic regression model , 2015 .

[31]  A. Goldberger,et al.  On Pure and Mixed Statistical Estimation in Economics , 1961 .

[32]  Ji Fu,et al.  A New Class of Biased Estimate , 2013 .

[33]  P. Wijekoon,et al.  Improvement of the Liu estimator in linear regression model , 2006 .

[34]  M. Revan Özkale,et al.  A further prediction method in linear mixed models: Liu prediction , 2018, Commun. Stat. Simul. Comput..

[35]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[36]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[37]  R. Shiller A DISTRIBUTED LAG ESTIMATOR DERIVED FROM SMOOTHNESS PRIORS , 1973 .

[38]  Joseph P. Newhouse,et al.  An Evaluation of Ridge Estimators , 1971 .

[39]  Abel M. Rodrigues Matrix Algebra Useful for Statistics , 2007 .

[40]  J. Fox,et al.  Applied Regression Analysis and Generalized Linear Models , 2008 .

[41]  G. C. McDonald,et al.  A Monte Carlo Evaluation of Some Ridge-Type Estimators , 1975 .

[42]  G. Shukur,et al.  On Liu Estimators for the Logit Regression Model , 2012 .