String periods in the order-preserving model

Abstract In the order-preserving model, two strings match if they share the same relative order between the characters at the corresponding positions. This model is quite recent, but it has already attracted significant attention because of its applications in data analysis. We introduce several types of periods in this setting (op-periods). Then we give algorithms to compute these periods in time O ( n ) , O ( n log ⁡ log ⁡ n ) , O ( n log 2 ⁡ log ⁡ n / log ⁡ log ⁡ log ⁡ n ) , O ( n log ⁡ n ) depending on the type of periodicity. In the most general variant, the number of different op-periods can be as big as Ω ( n 2 ) , and a compact representation is needed. Our algorithms require novel combinatorial insight into the properties of op-periods. In particular, we characterize the Fine–Wilf property for coprime op-periods.

[1]  Travis Gagie,et al.  An Encoding for Order-Preserving Matching , 2016, ESA.

[2]  Mathieu Raffinot,et al.  Single and Multiple Consecutive Permutation Motif Search , 2013, ISAAC.

[3]  Arseny M. Shur,et al.  On the Periods of Partial Words , 2001, MFCS.

[4]  Marc Noy,et al.  Consecutive patterns in permutations , 2003, Adv. Appl. Math..

[5]  Jorma Tarhio,et al.  A filtration method for order-preserving matching , 2016, Inf. Process. Lett..

[6]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[7]  Jorma Tarhio,et al.  Engineering order‐preserving pattern matching with SIMD parallelism , 2017, Softw. Pract. Exp..

[8]  A. M. Shur,et al.  Partial words and the interaction property of periods , 2004 .

[9]  Jean Berstel,et al.  Partial Words and a Theorem of Fine and Wilf , 1999, Theor. Comput. Sci..

[10]  H. Wilf,et al.  Uniqueness theorems for periodic functions , 1965 .

[11]  Lucian Ilie,et al.  Fine and Wilf's Theorem for Abelian Periods , 2006, Bull. EATCS.

[12]  Wojciech Rytter,et al.  Fast algorithms for Abelian periods in words and greatest common divisor queries , 2017, J. Comput. Syst. Sci..

[13]  Wojciech Rytter,et al.  A note on efficient computation of all Abelian periods in a string , 2013, Inf. Process. Lett..

[14]  Wojciech Rytter,et al.  String Periods in the Order-Preserving Model , 2018, STACS.

[15]  Travis Gagie,et al.  A compact index for order‐preserving pattern matching , 2019, Softw. Pract. Exp..

[16]  Raffaele Giancarlo,et al.  Periodicity and repetitions in parameterized strings , 2008, Discret. Appl. Math..

[17]  Domenico Cantone,et al.  An Efficient Skip-Search Approach to the Order-Preserving Pattern Matching Problem , 2015, Stringology.

[18]  Pawel Gawrychowski,et al.  Order-preserving pattern matching with k mismatches , 2016, Theor. Comput. Sci..

[19]  Antonio Restivo,et al.  Fine and Wilf's Theorem for Three Periods and a Generalization of Sturmian Words , 1999, Theor. Comput. Sci..

[20]  Francine Blanchet-Sadri,et al.  Partial words and a theorem of Fine and Wilf revisited , 2002, Theor. Comput. Sci..

[21]  Simone Faro,et al.  Efficient Algorithms for the Order Preserving Pattern Matching Problem , 2016, AAIM.

[22]  Tomasz Kociumaka,et al.  Subquadratic-Time Algorithms for Abelian Stringology Problems , 2017 .

[23]  Luca Q. Zamboni,et al.  Fine and Wilf words for any periods , 2003 .

[24]  Wojciech Rytter,et al.  A linear time algorithm for consecutive permutation pattern matching , 2013, Inf. Process. Lett..

[25]  Joong Chae Na,et al.  A fast algorithm for order-preserving pattern matching , 2015, Inf. Process. Lett..

[26]  Arseny M. Shur,et al.  Periodic Partial Words and Random Bipartite Graphs , 2014, Fundam. Informaticae.

[27]  Wojciech Rytter,et al.  Jewels of stringology , 2002 .

[28]  Wojciech Rytter,et al.  Order-preserving indexing , 2016, Theor. Comput. Sci..

[29]  Maxime Crochemore,et al.  Algorithms on strings , 2007 .

[30]  Jorma Tarhio,et al.  Filtration Algorithms for Approximate Order-Preserving Matching , 2015, SPIRE.

[31]  Francine Blanchet-Sadri,et al.  Graph connectivity, partial words, and a theorem of Fine and Wilf , 2008, Inf. Comput..

[32]  Hideo Bannai,et al.  Generalized pattern matching and periodicity under substring consistent equivalence relations , 2016, Theor. Comput. Sci..

[33]  T. Apostol Introduction to analytic number theory , 1976 .

[34]  Wojciech Rytter,et al.  Jewels of stringology : text algorithms , 2002 .

[35]  Jacques Justin,et al.  On a paper by Castelli, Mignosi, Restivo , 2000, RAIRO Theor. Informatics Appl..

[36]  Arnaud Lefebvre,et al.  Algorithms for Computing Abelian Periods of Words , 2012, Discret. Appl. Math..

[37]  Francine Blanchet-Sadri,et al.  Abelian periods, partial words, and an extension of a theorem of Fine and Wilf , 2013, RAIRO Theor. Informatics Appl..

[38]  Arnaud Lefebvre,et al.  A note on easy and efficient computation of full abelian periods of a word , 2016, Discret. Appl. Math..

[39]  Steven Skiena,et al.  Lowest common ancestors in trees and directed acyclic graphs , 2005, J. Algorithms.

[40]  Jorma Tarhio,et al.  Alternative Algorithms for Order-Preserving Matching , 2015, Stringology.