Generic predation in age structure predator-prey models
暂无分享,去创建一个
[1] P. Waltman. Coexistence in chemostat-like models , 1990 .
[2] M. Ablowitz,et al. A connection between nonlinear evolution equations and ordinary differential equations of P‐type. II , 1980 .
[3] Kendrick,et al. Applications of Mathematics to Medical Problems , 1925, Proceedings of the Edinburgh Mathematical Society.
[4] M. Gurtin,et al. Letter: A system of equations for age-dependent population diffusion. , 1973, Journal of theoretical biology.
[5] Gail S. K. Wolkowicz,et al. Global Asymptotic Behavior of a Chemostat Model with Discrete Delays , 1997, SIAM J. Appl. Math..
[6] Morton E. Gurtin,et al. Some simple models for nonlinear age-dependent population dynamics , 1979 .
[7] Francisco J. Solis,et al. Nonlinear juvenile predation population dynamics , 2011, Math. Comput. Model..
[8] A. M'Kendrick. Applications of Mathematics to Medical Problems , 1925, Proceedings of the Edinburgh Mathematical Society.
[9] M. Ablowitz,et al. Nonlinear evolution equations and ordinary differential equations of painlevè type , 1978 .
[10] Robert Conte,et al. The Painlevé property : one century later , 1999 .
[11] Francisco J. Solis. Self-limitation, fishing and cannibalism , 2003, Appl. Math. Comput..
[12] R. Seydel. Practical Bifurcation and Stability Analysis , 1994 .
[13] F. Brauer,et al. Mathematical Models in Population Biology and Epidemiology , 2001 .
[14] Pierre Magal,et al. Travelling Wave Solutions in Multigroup Age-Structured Epidemic Models , 2009 .
[15] Ellen Brooks-Pollock,et al. The Impact of Realistic Age Structure in Simple Models of Tuberculosis Transmission , 2010, PloS one.
[16] Bernd Krauskopf,et al. Numerical Continuation Methods for Dynamical Systems , 2007 .
[17] J. Cushing. An introduction to structured population dynamics , 1987 .
[18] A. R. Chowdhury,et al. Painlevé analysis and its applications , 2000 .
[19] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[20] A. Babu,et al. Efficacy, prey stage preference and optimum predator–prey ratio of the predatory mite, Neoseiulus longispinosus Evans (Acari: Phytoseiidae) to control the red spider mite, Oligonychus coffeae Nietner (Acari: Tetranychidae) infesting tea , 2012 .
[21] Willi-Hans Steeb,et al. Nonlinear Evolution Equations and Painleve Test , 1988 .
[22] L. Eberhardt. Models of ungulate population dynamics , 1991 .
[23] P. Sachdev,et al. Integrability and singularity structure of predator‐prey system , 1993 .
[24] Jean M. G. Thomas,et al. Predator—Prey Relationships on Apiaceae at an Organic Farm , 2012, Environmental entomology.
[25] Henry L. Langhaar,et al. General population theory in the age-time continuum , 1972 .
[26] P. Clarkson,et al. Solitons, Nonlinear Evolution Equations and Inverse Scattering: References , 1991 .
[27] M. Ablowitz,et al. Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .