Generic predation in age structure predator-prey models

In this paper we use analytical tools based in the Painleve analysis and bifurcation theory to offer stable predator-prey models with age structure. Such models account for within-species and the approach is based at the level of individual organisms. We analyze the type of theoretical predation that a system requires to have real solutions where only poles as singularities are allowed and also to have periodic solutions. The main feature sought is the coexistence of the interacting populations.

[1]  P. Waltman Coexistence in chemostat-like models , 1990 .

[2]  M. Ablowitz,et al.  A connection between nonlinear evolution equations and ordinary differential equations of P‐type. II , 1980 .

[3]  Kendrick,et al.  Applications of Mathematics to Medical Problems , 1925, Proceedings of the Edinburgh Mathematical Society.

[4]  M. Gurtin,et al.  Letter: A system of equations for age-dependent population diffusion. , 1973, Journal of theoretical biology.

[5]  Gail S. K. Wolkowicz,et al.  Global Asymptotic Behavior of a Chemostat Model with Discrete Delays , 1997, SIAM J. Appl. Math..

[6]  Morton E. Gurtin,et al.  Some simple models for nonlinear age-dependent population dynamics , 1979 .

[7]  Francisco J. Solis,et al.  Nonlinear juvenile predation population dynamics , 2011, Math. Comput. Model..

[8]  A. M'Kendrick Applications of Mathematics to Medical Problems , 1925, Proceedings of the Edinburgh Mathematical Society.

[9]  M. Ablowitz,et al.  Nonlinear evolution equations and ordinary differential equations of painlevè type , 1978 .

[10]  Robert Conte,et al.  The Painlevé property : one century later , 1999 .

[11]  Francisco J. Solis Self-limitation, fishing and cannibalism , 2003, Appl. Math. Comput..

[12]  R. Seydel Practical Bifurcation and Stability Analysis , 1994 .

[13]  F. Brauer,et al.  Mathematical Models in Population Biology and Epidemiology , 2001 .

[14]  Pierre Magal,et al.  Travelling Wave Solutions in Multigroup Age-Structured Epidemic Models , 2009 .

[15]  Ellen Brooks-Pollock,et al.  The Impact of Realistic Age Structure in Simple Models of Tuberculosis Transmission , 2010, PloS one.

[16]  Bernd Krauskopf,et al.  Numerical Continuation Methods for Dynamical Systems , 2007 .

[17]  J. Cushing An introduction to structured population dynamics , 1987 .

[18]  A. R. Chowdhury,et al.  Painlevé analysis and its applications , 2000 .

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  A. Babu,et al.  Efficacy, prey stage preference and optimum predator–prey ratio of the predatory mite, Neoseiulus longispinosus Evans (Acari: Phytoseiidae) to control the red spider mite, Oligonychus coffeae Nietner (Acari: Tetranychidae) infesting tea , 2012 .

[21]  Willi-Hans Steeb,et al.  Nonlinear Evolution Equations and Painleve Test , 1988 .

[22]  L. Eberhardt Models of ungulate population dynamics , 1991 .

[23]  P. Sachdev,et al.  Integrability and singularity structure of predator‐prey system , 1993 .

[24]  Jean M. G. Thomas,et al.  Predator—Prey Relationships on Apiaceae at an Organic Farm , 2012, Environmental entomology.

[25]  Henry L. Langhaar,et al.  General population theory in the age-time continuum , 1972 .

[26]  P. Clarkson,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering: References , 1991 .

[27]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .