IONIC COMPOSITION STRUCTURE OF CORONAL MASS EJECTIONS IN AXISYMMETRIC MAGNETOHYDRODYNAMIC MODELS

We present the ionic charge state composition structure derived from axisymmetric MHD simulations of coronal mass ejections (CMEs), initiated via the flux-cancellation and magnetic breakout mechanisms. The flux-cancellation CME simulation is run on the Magnetohydrodynamics-on-A-Sphere code developed at Predictive Sciences, Inc., and the magnetic breakout CME simulation is run on ARC7 developed at NASA GSFC. Both MHD codes include field-aligned thermal conduction, radiative losses, and coronal heating terms which make the energy equations sufficient to calculate reasonable temperatures associated with the steady-state solar wind and model the eruptive flare heating during CME formation and eruption. We systematically track a grid of Lagrangian plasma parcels through the simulation data and calculate the coronal density and temperature history of the plasma in and around the CME magnetic flux ropes. The simulation data are then used to integrate the continuity equations for the ionic charge states of several heavy ion species under the assumption that they act as passive tracers in the MHD flow. We construct two-dimensional spatial distributions of commonly measured ionic charge state ratios in carbon, oxygen, silicon, and iron that are typically elevated in interplanetary coronal mass ejection (ICME) plasma. We find that the slower CME eruption has relatively enhanced ionic charge states and the faster CME eruption shows basically no enhancement in charge states—which is the opposite trend to what is seen in the in situ ICME observations. The primary cause of the difference in the ionic charge states in the two simulations is not due to the different CME initiation mechanisms per se. Rather, the difference lies in their respective implementation of the coronal heating which governs the steady-state solar wind, density and temperature profiles, the duration of the connectivity of the CME to the eruptive flare current sheet, and the contribution of the flare-heated plasma associated with the reconnection jet outflow into the ejecta. Despite the limitations inherent in the first attempt at this novel procedure, the simulation results provide strong evidence in support of the conclusion that enhanced heavy ion charge states within CMEs are a direct consequence of flare heating in the low corona. We also discuss future improvements through combining numerical CME modeling with quantitative ionic charge state calculations.

[1]  A. Galvin Minor Ion Composition in CME‐Related Solar Wind , 2013 .

[2]  S. Lepri,et al.  CONSTRAINTS ON CORONAL MASS EJECTION EVOLUTION FROM IN SITU OBSERVATIONS OF IONIC CHARGE STATES , 2011 .

[3]  M. Lyutikov,et al.  IN SITU HEATING OF THE 2007 MAY 19 CME EJECTA DETECTED BY STEREO/PLASTIC AND ACE , 2011, 1101.4560.

[4]  S. Lepri,et al.  DIRECT OBSERVATIONAL EVIDENCE OF FILAMENT MATERIAL WITHIN INTERPLANETARY CORONAL MASS EJECTIONS , 2010 .

[5]  T. Forbes,et al.  CURRENT SHEET ENERGETICS, FLARE EMISSIONS, AND ENERGY PARTITION IN A SIMULATED SOLAR ERUPTION , 2010 .

[6]  J. Luhmann,et al.  Sun to 1 AU propagation and evolution of a slow streamer-blowout coronal mass ejection , 2010 .

[7]  Hilary V. Cane,et al.  Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23 (1996 – 2009): Catalog and Summary of Properties , 2010 .

[8]  J. Linker,et al.  CORONAL MASS EJECTION INITIATION: ON THE NATURE OF THE FLUX CANCELLATION MODEL , 2010, 1005.4669.

[9]  B. Lynch,et al.  Multipoint Data Analysis and Modeling of the May and November 2007 ICMEs , 2010 .

[10]  H. Hara,et al.  PHYSICAL CONDITIONS IN A CORONAL MASS EJECTION FROM HINODE, STEREO, AND SOHO OBSERVATIONS , 2010 .

[11]  Austria,et al.  LINKING REMOTE IMAGERY OF A CORONAL MASS EJECTION TO ITS IN SITU SIGNATURES AT 1 AU , 2009, 0910.1188.

[12]  M. Lockwood,et al.  A solar storm observed from the Sun to Venus using the STEREO, Venus Express, and MESSENGER spacecraft , 2009 .

[13]  J. Linker,et al.  MULTISPECTRAL EMISSION OF THE SUN DURING THE FIRST WHOLE SUN MONTH: MAGNETOHYDRODYNAMIC SIMULATIONS , 2008 .

[14]  T. Gombosi,et al.  BREAKOUT CORONAL MASS EJECTION OR STREAMER BLOWOUT: THE BUGLE EFFECT , 2008 .

[15]  J. Raymond,et al.  THREE-DIMENSIONAL STRUCTURE AND ENERGY BALANCE OF A CORONAL MASS EJECTION , 2008, 0810.4950.

[16]  J. Luhmann,et al.  Topological Evolution of a Fast Magnetic Breakout CME in Three Dimensions , 2008 .

[17]  A. Reinard Analysis of Interplanetary Coronal Mass Ejection Parameters as a Function of Energetics, Source Location, and Magnetic Structure , 2008 .

[18]  S. Antiochos,et al.  Homologous Confined Filament Eruptions via Magnetic Breakout , 2008 .

[19]  B. van der Holst,et al.  Simulation of a Breakout Coronal Mass Ejection in the Solar Wind , 2007 .

[20]  T. Gombosi,et al.  Alfvén Profile in the Lower Corona: Implications for Shock Formation , 2007 .

[21]  Ilia I. Roussev,et al.  New Physical Insight on the Changes in Magnetic Topology during Coronal Mass Ejections: Case Studies for the 2002 April 21 and August 24 Events , 2007 .

[22]  S. Lepri,et al.  Ion Charge States in Halo Coronal Mass Ejections: What Can We Learn about the Explosion? , 2007, 0706.3395.

[23]  H. Warren,et al.  The Magnetic Topology of Coronal Mass Ejection Sources , 2007, astro-ph/0703049.

[24]  S. Lepri,et al.  Ion Charge States in the Fast Solar Wind: New Data Analysis and Theoretical Refinements , 2007, astro-ph/0702131.

[25]  M. Romoli,et al.  A Comprehensive Study of the Initiation and Early Evolution of a Coronal Mass Ejection from Ultraviolet and White-Light Data , 2007 .

[26]  T. Zurbuchen,et al.  In-Situ Solar Wind and Magnetic Field Signatures of Interplanetary Coronal Mass Ejections , 2006 .

[27]  J. Luhmann,et al.  Coronal Magnetic Field Topology over Filament Channels: Implication for Coronal Mass Ejection Initiations , 2006 .

[28]  T. Zurbuchen,et al.  Kinetic properties of heavy solar wind ions from Ulysses‐SWICS , 2006 .

[29]  T. Forbes,et al.  Predicted Light Curves for a Model of Solar Eruptions , 2005 .

[30]  P. Chen,et al.  Self-Consistent Magnetohydrodynamic Modeling of a Coronal Mass Ejection, Coronal Dimming, and a Giant Cusp-shaped Arcade Formation , 2005, astro-ph/0508478.

[31]  A. Reinard Comparison of Interplanetary CME Charge State Composition with CME-associated Flare Magnitude , 2005 .

[32]  P. Chen,et al.  A ug 2 00 5 SELF-CONSISTENT MHD MODELING OF A CORONAL MASS EJECTION , CORONAL DIMMING , AND A GIANT CUSP-SHAPED ARCADE FORMATION , 2005 .

[33]  K. Olson,et al.  A Numerical Study of the Breakout Model for Coronal Mass Ejection Initiation , 2004 .

[34]  I. Richardson,et al.  Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies , 2004 .

[35]  L. Ofman Three-fluid model of the heating and acceleration of the fast solar wind , 2004 .

[36]  T. Forbes,et al.  A Numerical Model of a Coronal Mass Ejection: Shock Development with Implications for the Acceleration of GeV Protons , 2004 .

[37]  J. Raymond,et al.  The Role of Magnetic Reconnection in the Observable Features of Solar Eruptions , 2004 .

[38]  S. Lepri,et al.  Iron charge state distributions as an indicator of hot ICMEs: Possible sources and temporal and spatial variations during solar maximum , 2004 .

[39]  J. Linker,et al.  Using an MHD simulation to interpret the global context of a coronal mass ejection observed by two spacecraft , 2003 .

[40]  U. Hwang,et al.  On the Determination of Ejecta Structure and Explosion Asymmetry from the X-Ray Knots of Cassiopeia A , 2003, astro-ph/0306119.

[41]  T. Zurbuchen,et al.  Internal structure of magnetic clouds: Plasma and composition , 2003 .

[42]  Dusan Odstrcil,et al.  Flux cancellation and coronal mass ejections , 2003 .

[43]  Jun Lin Energetics and Propagation of Coronal Mass Ejections in Different Plasma Environments , 2002 .

[44]  J. Grun,et al.  Dynamical overstability of radiative blast waves: the atomic physics of shock stability. , 2002, Physical review letters.

[45]  S. Lepri,et al.  Iron Charge Distribution as an Identifier of Interplanetary Coronal Mass Ejections , 2001 .

[46]  R. Skoug,et al.  Comparison between average charge states and abundances of ions in CMEs and the slow solar wind , 2001 .

[47]  J. Linker,et al.  Magnetohydrodynamic modeling of prominence formation within a helmet streamer , 2001 .

[48]  T. Henke,et al.  Ionization state and magnetic topology of coronal mass ejections , 2001 .

[49]  C. Russell,et al.  Multispacecraft modeling of the flux rope structure of interplanetary coronal mass ejections: Cylindrically symmetric versus nonsymmetric topologies , 2001 .

[50]  A. Vourlidas,et al.  SOHO Observations of a Coronal Mass Ejection , 2001 .

[51]  J. Linker,et al.  Including the Transition Region in Models of the Large-Scale Solar Corona , 2001 .

[52]  B. Low,et al.  The Hydromagnetic Origin of the Two Dynamical Types of Solar Coronal Mass Ejections , 2001 .

[53]  J. Geiss,et al.  Composition of quasi‐stationary solar wind flows from Ulysses/Solar Wind Ion Composition Spectrometer , 2000 .

[54]  Nathan A. Schwadron,et al.  Magnetic structure of the slow solar wind: Constraints from composition data , 2000 .

[55]  P. Bochsler Abundances and charge states of particles in the solar wind , 2000 .

[56]  C. Russell,et al.  Intercomparison of NEAR and Wind interplanetary coronal mass ejection observations , 1999 .

[57]  D. Schnack,et al.  Magnetohydrodynamic modeling of the global solar corona , 1999 .

[58]  Robert L. Tokar,et al.  A prolonged He+ enhancement within a coronal mass ejection in the solar wind , 1999 .

[59]  J. Geiss,et al.  Unusual composition of the solar wind in the 2–3 May 1998 CME observed with SWICS on ACE , 1999 .

[60]  S. Antiochos,et al.  A Model for Solar Coronal Mass Ejections , 1998, astro-ph/9807220.

[61]  T. Henke,et al.  Differences in the O7+/O6+ ratio of magnetic cloud and non‐cloud coronal mass ejections , 1998 .

[62]  C. Russell,et al.  Electron temperature in the ambient solar wind: Typical properties and a lower bound at 1 AU , 1998 .

[63]  Charles J. Farrugia,et al.  A magnetic cloud containing prominence material: January 1997 , 1998 .

[64]  V. Hansteen,et al.  The Role of Helium in the Outer Solar Atmosphere , 1997 .

[65]  Johannes Geiss,et al.  AN EMPIRICAL STUDY OF THE ELECTRON TEMPERATURE AND HEAVY ION VELOCITIES IN THE SOUTH POLAR CORONAL HOLE , 1997 .

[66]  Mark S. Giampapa,et al.  Cosmic Winds and the Heliosphere , 1997 .

[67]  Ian G. Richardson,et al.  Regions of abnormally low proton temperature in the solar wind (1965–1991) and their association with ejecta , 1995 .

[68]  A. Bürgi,et al.  Proton and alpha particle fluxes in the solar wind: Results of a three‐fluid model , 1992 .

[69]  R. Athay Radiation loss rates in Lyman-alpha for solar conditions , 1986 .

[70]  J. Geiss,et al.  Helium and minor ions in the corona and solar wind: Dynamics and charge states , 1986 .

[71]  S. Owocki,et al.  The solar wind ionization state as a coronal temperature diagnostic , 1983 .

[72]  F. Mariani,et al.  Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP-8 observations , 1981 .

[73]  H. Rosenbauer,et al.  Singly‐ionized helium in the driver gas of an interplanetary shock wave , 1980 .

[74]  E. Fenimore Solar wind flows associated with hot heavy ions , 1980 .

[75]  E. Fenimore,et al.  Solar wind heavy ions from flare-heated coronal plasma , 1979 .

[76]  J. Hollweg,et al.  Some physical processes in the solar wind , 1978 .

[77]  A. Hundhausen,et al.  Ionization state of the interplanetary plasma , 1968 .

[78]  E. Parker Dynamics of the Interplanetary Gas and Magnetic Fields , 1958 .