Minkowski Geometric Algebra and the Stability of Characteristic Polynomials

A polynomial p is said to be Γ-stable if all its roots lie within a given domain Γ in the complex plane. The Γ-stability of an entire family of polynomials, defined by selecting the coefficients of p from specified complex sets, can be verified by (i) testing the Γ-stability of a single member, and (ii) checking that the “total value set” V * for p along the domain boundary ∂Γ does not contain 0 (V * is defined as the set of all values of p for each point on ∂Γ and every possible choice of the coefficients). The methods of Minkowski geometric algebra —the algebra of point sets in the complex plane — offer a natural language for the stability analysis of families of complex polynomials. These methods are introduced, and applied to analyzing the stability of disk polynomials with coefficients selected from circular disks in the complex plane. In this context, V * may be characterized as the union of a one-parameter family of disks, and we show that the Γ-stability of a disk polynomial can be verified by a finite algorithm (a counterpart to the Kharitonov conditions for rectangular coefficient sets) that entails checking that at most two real polynomials remain positive for all t, when the domain boundary ∂Γ is a given polynomial curve γ(t).Furthermore, the “robustness margin” can be determined by computing the real roots of a real polynomial.

[1]  Roberto Tempo,et al.  The Kharitonov theorem with degree drop , 1999, IEEE Trans. Autom. Control..

[2]  M. Marden Geometry of Polynomials , 1970 .

[3]  Mario Milanese,et al.  Robust Stability of Linear State Space Models Via Bernstein Polynomials , 1990 .

[4]  Anil Kaul Computing Minkowski sums , 1993 .

[5]  B. T. Polyak,et al.  Construction of value set for robustness analysis via circular arithmetic , 1994 .

[6]  H. Persson,et al.  NC machining of arbitrarily shaped pockets , 1978 .

[7]  H. Bilharz,et al.  Bemerkung zu einem Satze von Hurwitz , 1944 .

[8]  C. Desoer,et al.  An elementary proof of Kharitonov's stability theorem with extensions , 1989 .

[9]  Jon G. Rokne,et al.  Disk Bézier curves , 1998, Comput. Aided Geom. Des..

[10]  A. Hurwitz Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt , 1895 .

[11]  H. Minkowski Volumen und Oberfläche , 1903 .

[12]  M. Zettler,et al.  Robustness analysis of polynomials with polynomial parameter dependency using Bernstein expansion , 1998, IEEE Trans. Autom. Control..

[13]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[14]  S. Barnett Polynomials and linear control systems , 1983 .

[15]  Diederich Hinrichsen,et al.  Control of Uncertain Systems , 1990 .

[16]  B. Ross Barmish,et al.  New Tools for Robustness of Linear Systems , 1993 .

[17]  Rida T. Farouki,et al.  Curves and surfaces in geometrical optics , 1992 .

[18]  F. Bookstein The line-skeleton , 1979 .

[19]  F. Gomes Teixeira Traité des courbes spéciales remarquables : planes et gauches , 1908 .

[20]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[21]  T. Tam,et al.  2D finite element mesh generation by medial axis subdivision , 1991 .

[22]  Helmut Pottmann,et al.  Exact Minkowski Products of N Complex Disks , 2002, Reliab. Comput..

[23]  J. J. Chou Numerical control milling machine toolpath generation for regions bounded by free form curves and surfaces , 1989 .

[24]  Pijush K. Ghosh,et al.  A mathematical model for shape description using Minkowski operators , 1988, Comput. Vis. Graph. Image Process..

[25]  Rida T. Farouki,et al.  Computing Minkowski sums of plane curves , 1995, Int. J. Comput. Geom. Appl..

[26]  Tristan Needham,et al.  Visual Complex Analysis , 1997 .

[27]  D. D. iljak,et al.  Technical Communique: Robust D-stability via positivity , 1999 .

[28]  Rida T. Farouki,et al.  Minkowski roots of complex sets , 2000, Proceedings Geometric Modeling and Processing 2000. Theory and Applications.

[29]  Christopher V. Hollot,et al.  Stability of families of polynomials: geometric considerations in coefficient space , 1987 .

[30]  HARRY BLUM,et al.  Shape description using weighted symmetric axis features , 1978, Pattern Recognit..

[31]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[32]  V. Kharitonov Asympotic stability of an equilibrium position of a family of systems of linear differntial equations , 1978 .

[33]  Bahram Ravani,et al.  Algorithms for Minkowski products and implicitly‐defined complex sets , 2000, Adv. Comput. Math..

[34]  H. Minkowski Volumen und Oberfläche , 1903 .

[35]  Nirmal Kumar Bose,et al.  A simple general proof of Kharitonov's generalized stability criterion , 1987 .

[36]  C. B. Soh,et al.  On the stability properties of polynomials with perturbed coefficients , 1985 .

[37]  Hwan Pyo Moon,et al.  Minkowski Geometric Algebra of Complex Sets , 2001 .

[38]  J. W. Bruce,et al.  What is an envelope? , 1981, The Mathematical Gazette.

[39]  Hwan Pyo Moon Minkowski Pythagorean hodographs , 1999, Comput. Aided Geom. Des..

[40]  Hyeong In Choi,et al.  New Algorithm for Medial Axis Transform of Plane Domain , 1997, CVGIP Graph. Model. Image Process..

[41]  Andrew Bartlett,et al.  Robust Control: Systems with Uncertain Physical Parameters , 1993 .

[42]  Nirmal K. Bose,et al.  Stability of a complex polynomial set with coefficients in a diamond and generalizations , 1989 .

[43]  Miodrag S. Petković,et al.  Complex Interval Arithmetic and Its Applications , 1998 .

[44]  L. Nackman,et al.  Automatic mesh generation using the symmetric axis transformation of polygonal domains , 1992, Proc. IEEE.

[45]  Huang Lin,et al.  Root locations of an entire polytope of polynomials: It suffices to check the edges , 1987, 1987 American Control Conference.

[46]  Martin Held,et al.  On the Computational Geometry of Pocket Machining , 1991, Lecture Notes in Computer Science.

[47]  P. Henrici,et al.  Circular arithmetic and the determination of polynomial zeros , 1971 .

[48]  Jon G. Rokne,et al.  Computer Methods for the Range of Functions , 1984 .

[49]  F. R. Gantmakher The Theory of Matrices , 1984 .

[50]  Howard Eves,et al.  Introduction to the geometry of complex numbers , 1956 .

[51]  H. Hadwiger Vorlesungen über Inhalt, Oberfläche und Isoperimetrie , 1957 .

[52]  T. A. Brown,et al.  Theory of Equations. , 1950, The Mathematical Gazette.

[53]  E. H. Lockwood,et al.  A Book of Curves , 1963, The Mathematical Gazette.

[54]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[55]  P. Giblin,et al.  Curves and Singularities , 1984 .

[56]  E. Frank On the zeros of polynomials with complex coefficients , 1946 .

[57]  Hans Schwerdtfeger,et al.  Geometry of Complex Numbers , 1980 .

[58]  Shankar P. Bhattacharyya,et al.  Robust stability of a family of disc polynomials , 1990 .