Tropical optimization problems with application to project scheduling with minimum makespan

We consider multidimensional optimization problems in the framework of tropical mathematics. The problems are formulated to minimize a nonlinear objective function that is defined on vectors over an idempotent semifield and calculated by means of multiplicative conjugate transposition. We start with an unconstrained problem and offer two complete direct solutions to demonstrate different practicable argumentation schemes. The first solution consists of the derivation of a sharp lower bound for the objective function and the solving of an equation to find all vectors that yield the bound. The second is based on extremal properties of the spectral radius of matrices and involves the evaluation of this radius for a certain matrix. This solution is then extended to problems with boundary constraints that specify the feasible solution set by a double inequality, and with a linear inequality constraint given by a matrix. To illustrate one application of the results obtained, we solve problems in project scheduling under the minimum makespan criterion subject to various precedence constraints on the time of initiation and completion of activities in the project. Simple numerical examples are given to show the computational technique used for solutions.

[1]  Nikolai Krivulin,et al.  Direct solutions to tropical optimization problems with nonlinear objective functions and boundary constraints , 2013, ArXiv.

[2]  Nikolai Krivulin,et al.  A Maximization Problem in Tropical Mathematics: A Complete Solution and Application Examples , 2013, Informatica.

[3]  R. Cuninghame-Green Minimax algebra and applications , 1991 .

[4]  S. Sergeev,et al.  Tropical and Idempotent Mathematics , 2009 .

[5]  Ludwig Elsner,et al.  Max-algebra and pairwise comparison matrices , 2004 .

[6]  Ricardo D. Katz,et al.  Tropical linear-fractional programming and parametric mean payoff games , 2011, J. Symb. Comput..

[7]  Timothy G. Griffin,et al.  Relational and algebraic methods in computer science , 2015, J. Log. Algebraic Methods Program..

[8]  Peter Jipsen,et al.  Relational and algebraic methods in computer science , 2016, J. Log. Algebraic Methods Program..

[9]  Alexander E. Guterman,et al.  Tropical Polyhedra are Equivalent to mean Payoff Games , 2009, Int. J. Algebra Comput..

[10]  B. Schutter "Max-Algebraic System Theory for Discrete Event Systems" , 1996 .

[11]  Michel Minoux,et al.  Graphs, dioids and semirings : new models and algorithms , 2008 .

[12]  Sergei Sergeev,et al.  The analytic hierarchy process, max algebra and multi-objective optimisation , 2013 .

[13]  B. Ciffler Scheduling general production systems using schedule algebra , 1963 .

[14]  K. G. Farlow,et al.  Max-Plus Algebra , 2009 .

[15]  Nikolai Krivulin,et al.  Extremal properties of tropical eigenvalues and solutions to tropical optimization problems , 2013, ArXiv.

[16]  Nikolai Krivulin,et al.  Complete Solution of a Constrained Tropical Optimization Problem with Application to Location Analysis , 2013, RAMiCS.

[17]  Mario Vanhoucke,et al.  Project Management with Dynamic Scheduling , 2012 .

[18]  J. Golan Semirings and Affine Equations over Them: Theory and Applications , 2003 .

[20]  N. Krivulin An extremal property of the eigenvalue of irreducible matrices in idempotent algebra and solution of the Rawls location problem , 2011 .

[21]  Nikolai K. Krivulin,et al.  Algebraic solutions to multidimensional minimax location problems with Chebyshev distance , 2011, ArXiv.

[22]  Peter Butkovič,et al.  Introduction to max-linear programming , 2009 .

[23]  Nikolai Krivulin,et al.  A multidimensional tropical optimization problem with a non-linear objective function and linear constraints , 2013, ArXiv.

[24]  Nikolai Krivulin,et al.  A constrained tropical optimization problem: complete solution and application example , 2013, ArXiv.

[25]  Nikolai Krivulin,et al.  Explicit solution of a tropical optimization problem with application to project scheduling , 2013, ArXiv.

[26]  N. Krivulin A new algebraic solution to multidimensional minimax location problems with Chebyshev distance , 2012, 1210.4770.

[27]  S. Gaubert Resource optimization and (min, +) spectral theory , 1995, IEEE Trans. Autom. Control..

[28]  P. Butkovic Max-linear Systems: Theory and Algorithms , 2010 .

[29]  Bernd Sturmfels,et al.  Tropical Mathematics , 2004, math/0408099.

[30]  Marianne Akian,et al.  Tropical Cramer Determinants Revisited , 2013, 1309.6298.

[31]  Bart De Schutter,et al.  Model predictive control for max-plus-linear discrete event systems , 2001, Autom..

[32]  S. Yau Mathematics and its applications , 2002 .

[33]  Geert Jan Olsder,et al.  Max Plus at Work-Modelling and Analysis of Synchronized Systems , 2006 .

[34]  Erik Demeulemeester,et al.  Project scheduling : a research handbook , 2002 .

[35]  K. Edee,et al.  ADVANCES IN IMAGING AND ELECTRON PHYSICS , 2016 .

[36]  R. Gorenflo,et al.  Multi-index Mittag-Leffler Functions , 2014 .

[37]  William M. McEneaney,et al.  Max-plus methods for nonlinear control and estimation , 2005 .

[38]  Karel Zimmermann,et al.  Disjunctive optimization, max-separable problems and extremal algebras , 2003, Theor. Comput. Sci..

[39]  Jean-Charles Billaut,et al.  Multicriteria scheduling , 2005, Eur. J. Oper. Res..

[40]  R. A. Cuninghame-Green,et al.  Describing Industrial Processes with Interference and Approximating Their Steady-State Behaviour , 1962 .